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Abstract

Subgraph counting, as a fundamental problem in network analysis,
is to count the number of subgraphs in a data graph that match a
given query graph by either homomorphism or subgraph isomor-
phism. The importance of subgraph counting derives from the fact
that it provides insights of a large graph, in particular a labeled
graph, when a collection of query graphs with different sizes and
labels are issued. The problem of counting is challenging. On one
hand, exact counting by enumerating subgraphs is NP-hard. On the
other hand, approximate counting by subgraph isomorphism can
only support 3/5-node query graphs over unlabeled graphs. Another
way for subgraph counting is to specify it as an SQL query and es-
timate the cardinality of the query in RDBMS. Existing approaches
for cardinality estimation can only support subgraph counting by
homomorphism up to some extent, as it is difficult to deal with
sampling failure when a query graph becomes large. A question
that arises is if subgraph counting can be supported by machine
learning (ML) and deep learning (DL). The existing DL approach
for subgraph isomorphism can only support small data graphs. The
ML/DL approaches proposed in RDBMS context for approximate
query processing and cardinality estimation cannot be used, as
subgraph counting is to do complex self-joins over one relation,
whereas existing approaches focus on multiple relations.

In this paper, we propose an Active Learned Sketch for Subgraph
Counting (ALSS) with two main components: a sketch learned
(LSS) and an active learner (AL). The sketch is learned by a neural
network regression model, and the active learner is to perform
model updates based on new arrival test query graphs. We conduct
extensive experimental studies to confirm the effectiveness and
efficiency of ALSS using large real labeled graphs. Moreover, we
show that ALSS can assist query optimizer to find a better query
plan for complex multi-way self-joins.
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1 Introduction

Graph has been widely used for modeling real applications in com-
mercial, biological, lexical, and social networks [58, 75, 78, 86, 99].
As one of fundamental problems, subgraph counting is to count how
many subgraphs in a labeled data graph that match a user-given
query graph by either homomorphism or subgraph isomorphism.
The subgraph counting provides insights to understand a large
complex data graph, as users can issue a collection of query graphs
with different sizes and labels. It has a wide range of applications
in network analysis, to name a few, designing graph kernels for
graph comparison and representation [72, 81], building probabilistic
models for computer vision tasks (e.g., photo cropping and image
segmentation) [31, 94, 95], and analyzing chemical and biological
networks (e.g., molecular properties prediction and phylogeny con-
struction) [18]. In addition to supporting applications, subgraph
counting can also be used in a system for query optimization to
estimate the cardinality for complex large joins with cycles, where
a query is to enumerate subgraph matchings in a large data graph
stored in a relational system [5, 57].

Exact subgraph counting by subgraph isomorphism is challeng-
ing. As surveyed in [69], there are enumeration methods [11, 14,
15, 17, 41, 57, 71] and analytical methods [8, 56, 62, 66]. Full sub-
graph enumeration is difficult as determining whether a given
query graph exists in a data graph by subgraph isomorphism is
NP-complete [16, 24]. The analytical approaches do counting by
decomposing a query graph into smaller subgraphs, and count-
ing the query graph based on the counts obtained for the smaller
subgraphs. The analytical methods are designed for some query
graphs up to a certain size (e.g., 5-node query graph), and is difficult
to have a general form for any size of query graphs. Instead of
exact subgraph counting, approximate subgraph counting has been
studied in recent years [19, 20, 23, 40, 85]. These approaches are
designed for query graphs with 3-5 nodes over simple unlabeled
data graphs, and are non-trivial to be extended to support labeled
graphs due to the intrinsic techniques they use for approximation
(e.g., color coding) [19, 20].

The subgraph counting can be supported in RDBMS using SQL
[60, 74], multi-way joins [21, 50, 84, 98], and processed as cardinal-
ity estimation. First, the approaches in [21, 60, 74, 84] decompose
a query graph into a set of small subgraphs, count the subgraph
matchings for the smaller subgraphs, and aggregate the counts to
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Table 1: ML Approaches for AQP and Cardinality Estimation

Supported Queries

Approach Join Selection Aggregate Group By Learning Strategy Model Model Update
DBEst [54] precomp. join  num., cate. cnt,sum,avg,etc. v supervised & unsupervised ~KDE & GBDT X
DeepDB [34] precomp. join  num., cate. cnt,sum,avg v unsupervised SPN v
Thirumuruganathan et. al. [79] X num., cate. cnt,sum,avg v unsupervised VAE X
Kiefer et. al. [43] Equi-join num., cate. cnt X unsupervised KDE v
Kipf et. al. [44] PK/FK join num., cate. cnt X supervised MSCN X
Dutt et. al. [25] X num., cate. cnt X supervised NN, GBDT X
Sun et. al. [76] PK/FK join num., cate., str. cnt X supervised Tree LSTM v
Hasan et. al. [32] X num., cate. cnt X unsupervised MADE X
Naru [90] precomp. join  num., cate. cnt X unsupervised MADE, Transformer v

approximate the final count. They rely on an assumption that the
counts of the smaller subgraphs are independent, which is imprac-
tical for real large graphs so that it incurs inaccurate estimation.
Second, the approaches in [50, 98] make use of join sampling that
draws matchings from the data graph. These approaches face dras-
tically increasing sampling failure in the intermediate join steps
when the query graphs and the distribution of the data graph are
complex (i.e., complex topological structure and label distribution),
although the sampling is independent. The limitations of these ap-
proaches cause the deterioration of estimation accuracy as well as
efficiency on counting for complex subgraphs. In [64], a benchmark
G-CARE for cardinality estimation of subgraph matching (homo-
morphism) is presented, which investigates estimation approaches
for graphs [23, 60, 74] as well as relational data [50, 84, 98]. With
G-CARE open source, we verify that join sampling has its limitation
for complex subgraph matching even by homomorphism when it
is used to test for large query graphs. The difficulty of cardinality
estimation comes from complex data distribution [48].

A question that arises is if Machine Learning (ML) and Deep
Learning (DL) can be effectively used for subgraph counting. Liu
et. al. in [52] study neural subgraph isomorphism counting using a
dynamic memory network. Their models are trained on synthetic
graphs which are up to 512 nodes (Table 4 in [52]). Their approach is
computationally expensive to be used for large data graphs. Below,
as subgraph counting (homomorphism or subgraph isomorphism)
can be specified as an SQL query, we discuss if DL approaches
studied in RDBMS context for approximate query processing (AQP)
or cardinality estimation can be used to support subgraph counting.

Table 1 summarizes the ML/DL approaches studied for AQP
(the top three) and cardinality estimation (the bottom six). The
SQL queries they support include join, selection, and group-by and
aggregation. Both supervised learning and unsupervised learning
are studied. The supervised learning approaches are query-driven
to learn a function mapping from query features to its cardinal-
ity [25, 44, 76], and the unsupervised learning approaches are data-
driven to focus on learning a joint probability distribution of the un-
derlying dataset [32, 34, 43, 79, 90]. By supervised learning [44, 76],
SQL queries are encoded based on the fixed database schema where
all the relations, attributes and join attributes need to be given
beforehand. By unsupervised learning [34, 54, 90], the model learns
the joint probability distribution of one relation. If queries contain
joins across multiple relations, multiplying the probabilities relies
on the independent assumption of relations [34]. Otherwise, models
need building on precomputed join results. None of the approaches
in Table 1 can be used to support subgraph counting directly for the

following reasons. First, a query graph can be any with different pat-
terns, sizes, and labels whereas the joins cannot be predetermined
or precomputed. Second, the approaches listed in Table 1 learn
joins across different relations in general, whereas the subgraph
counting is by self-joins between an edge relation and itself. There
can be many joins but all are based on one relation with the same
distribution. The models used for joins across different relations
are not effective to learn self-joins on one relation, and versa visa.
It is difficult to support subgraph counting with homomorphism
by existing ML/DL approaches, and it is even difficult to support
subgraph counting with subgraph isomorphism by SQL due to the
additional constraints.

In this paper, we propose an Active Learned Sketch for Subgraph
counting (ALSS) with two main components, a sketch learned for
subgraph counting (LSS) and an active learner (AL), to learn a
sketch for subgraph counting over a labeled undirected data graph
G, where subgraph counting can be by either homomorphism or
subgraph isomorphism. Below, we focus on node-labeled data and
query graphs. We will discuss the extension to both node/edge-label
graph in this paper.

Sketch Learning: We learn a sketch by a neural network regres-
sion model. Inspired by the decomposed-based subgraph counting
approaches [8, 9, 23, 40, 46, 66, 74], we decompose a user-given
query graph, g, into smaller subgraphs. To avoid confusing, we
call a smaller subgraph decomposed as a substructure below. The
learned sketch firstly extracts features for each individual substruc-
ture as a fixed-length vectorized representation, then predicts the
count of the query graph g by aggregating the representations of
all substructures. Specifically, we adopt a graph neural network
(GNN) [13, 100] to represent labeled substructures, and learn the
aggregate function by self-attention mechanism, followed by a
multi-layer perceptron (MLP) that predicts the final count. Our
learned sketch has the following advantages. First, due to the uni-
versal approximation capability of neural networks [36, 37], the
error from a simple combination of the substructure counts under
the independence assumption can be greatly reduced. Instead, the
learned sketch conducts the aggregation by evaluating the query-
specific importance of the substructures. Second, the sketch learns
via error feedback from its estimations over a set of query graphs
where each query is with the exact count, by a powerful optimizer
(e.g., stochastic gradient descent). Third, the learned sketch cap-
tures the characteristics of learning task by exploiting the inductive
bias of the subgraph counting tasks. Here, GNN models self-joins
(or self-join graphs) on one relation via parameter sharing. The
learned sketch is permutation-invariant regarding the set of the



substructures (either by homomorphism or subgraph isomorphism).
Fourth, our learned sketch will be adapted to a specific workload
and its underlying distribution by learning, and does not serve the
purpose of being a general estimation formula to perform well on
any workload.

Active Learning: A main issue by supervised learning in LSS is
that it requires a large training dataset of query graphs together
with label and the exact count. In fact, the number of possible la-
beled query graphs grows exponentially w.r.t. the number of nodes
and distinct labels, which implies it is almost impossible to have a
rather complete training set to learn a model. To address this issue,
we adopt active learning [7, 70]. The core of active learning is a
strategy that selects a subset from a pool of unlabeled data, based
on a metric of informativeness regarding the model, to enrich its
training data for prediction improvement. But, active learning has
its own issue. Recall that we learn a neural network regression
model for LSS. Existing active learning approaches for regression
models measure the informativeness based on expected variance re-
duction, expected model change, or model ensemble [22, 47, 53, 55].
Although these approaches are effective on classical ML models (i.e.,
linear regression, random forests, and single-layer artificial neural
network), they suffer from high computation cost. To avoid such
cost, we take a new approach in devising a specialized active learn-
ing strategy for LSS, which is not only effective but also efficient.
In brief, we incorporate a classification task into LSS to predict the
magnitude of subgraph counts. In other words, our LSS has two
learning tasks. One is to predict the subgraph count for a given
query graph. The other is to help AL to decide how to select test
query graphs for further learning. In the framework of uncertainty
sampling for active learning [49], our active learner AL leverages
the uncertainty of the classification task and the cross-task consis-
tency between the two interrelated tasks without performing model
ensemble or computing gradients. Note that the target of AL in LSS
is not to narrow down the data complexity as statistical learning
does [30, 59]. Instead, AL of LSS aims to perform more efficient
model updates compared with passive learning, under equivalent
data volume.

Contributions. The main contributions of ALSS are summarized
as follows. ® We propose a supervised learning model LSS, for
estimating subgraph counts. To the best of our knowledge, LSS
is the first ML/DL based approach for subgraph counting over
a large labeled data graph, dealing with either homomorphism
or subgraph isomorphism. @ We devise a simple yet effective ac-
tive learning strategy, specialized for LSS, aiming to improve the
model’s generalization in contrast to passive learning. ® We con-
duct extensive experimental studies to verify the effectiveness and
efficiency of LSS and its active learning strategy, via comparison
with relational-based and native graph algorithms. We verify that
existing approaches fail to handle large and complex query graphs,
due to the failure of their sampling strategies. On the contrary, our
LSS makes accurate estimation stably from small to large queries,
and the performance is robust under varying training workloads.
@ To further study the application of LSS, we equip LSS as a cost
estimator of a multi-way join system. Testing on 3 real data graphs
shows that LSS can improve the quality of query plans up to 3
orders of magnitude over 1,560 diversified query graphs.

Roadmap. §2 gives the problem statement. In §3, we present an
overview of the learned sketch. Then, we elaborate on the learned
sketch model and the corresponding active learning strategy in §4
and §5, respectively. §6 reports the experimental results. Finally,
we review the related works in §7 and conclude the paper in §8.

2 Problem Statement

We model a graph as a labeled undirected graph G = (V,E, L, %).
Here, V is a set of nodes, E is a set of undirected edges, X is a set
of labels, and L is the mapping function that maps a node u € V
to a label denoted as L(u). We denote neighbors of node u in G as
N() = {v|(u,v) € E}.

Given a data graph G = (V,E,L,%) and a query graph q =
(Vg, Eq, L, %). A homomorphism of g to G is a function f : Vg >V
such that (1) for every u € Vg, L(u) = L(f(u)), and (2) for every
(u,v) € Eq, (f(u), f(v)) € E. A subgraph isomorphism of g to G
is a homomorphism of ¢ to G under the condition that f is an
injective function, where f(u) # f(v) for any pair of u and v in Vy
if u # v. A homomorphism (or subgraph isomorphism) function
f of g induces a subgraph Gf = (Vr, Ef, L, %) in G, where Vy is
the set of nodes, f(u), for every u in Vg and Ef is the set of edges,
(f(w), f(v)), for every edge (u,v) in Eq. We say Gy is a subgraph
matching of g to G by homomorphism (or subgraph isomorphism)
if f is a homomorphism (or subgraph isomorphism) function.

Subgraph Counting: Given a data graph G and a query graph ¢,
subgraph counting is to find the total number of subgraph match-
ings of g to G, denoted as ¢(q). A node in a query graph is allowed
to be unlabeled. When a node in g is unlabeled, we assign a special
label, which is interpreted as any label.

We build a machine learning model from a given data graph
G and a set of query graphs and the corresponding counts, Q =
{(q1,¢(q1)), (g2, c(g2)), - - - }, where g; is a query graph and ¢(q;) is
its exact count. The model will learn a sketch for subgraph count-
ing by either homomorphism or subgraph isomorphism, but not
both. In other words, for subgraph counting by homomorphism
(subgraph isomorphism), every count c(q;) must be for homomor-
phism (subgraph isomorphism). A model will give an estimated
count é(q) for an unseen query graph q. We use g-error to evaluate
the accuracy of the estimated value.

c(q) ¢é(q) } )

é(q) c(q)
Intuitively, g-error quantifies the factor by which the estimated
count differs from the true count. It is symmetrical and relative so
that it provides the statistical stability for true counts of various
magnitudes. Here, we assume c(q) > 1 and ¢é(q) > 1.

g-error(q) = max{

3 An Overview

The overview of Active Learned Sketch for Subgraph counting
(ALSS) is shown in Fig. 1, which has two main components, a
learned sketch (LSS) and an active learner (AL). Here, LSS is a neu-
ral network regression model for predicting the counts of queries,
and AL selects some informative query graphs g; based on a selec-
tion strategy from new arrival test queries. The selected queries
qi and their exact count c(q;) are collected for possible further
learning. As shown in Fig. 1, initially, a training query workload,
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Figure 1: Overview of the Active Learned Sketch

Q ={(q1,¢(q1)), (g2, c(g2)), - - - } is given over a data graph G, ALSS
will learn a sketch LSS offline using a graph neural network (GNN)
based model [13, 100]. The learned sketch LSS is then used to pre-
dict the count, &(q), for a test query graph ¢. Let O = {(q1, é(q1)),
(g2, ¢(q2)), - - - } be the set of the given test queries and their corre-
sponding predicted counts. The active learner AL will select a set
of queries under a given budget, whose information is expected to
help improve the model’s performance, from Q. Intuitively, a query
qi is selected if the model’s prediction has a larger g-error(q;). As
the true count c(q;) is unknown yet, AL will evaluate the prediction
uncertainty based on an uncertainty function and perform biased
sampling on the uncertainty. Take Qa as the set of additional se-
lected queries with true counts computed. ALSS will update the
sketch LSS incrementally by re-optimizing the loss function for the
augmented training data, QU Q. This procedure repeats during on-
line testing and can be fully automated without human-in-the-loop.
The benefit of LSS actively learned is two folds. First, the increasing
volume of training data improves the performance of LSS. Second,
the added new training data motivates LSS to adapt to a varying
workload.

4 The Learned Sketch

In this section, we discuss the Learned Sketch for Subgraph counting
(LSS) on modeling, architecture, and node encoding.

4.1 LSS Modeling

The design of LSS is inspired by decomposed-based subgraph count-
ing [8, 9, 23, 40, 46, 66, 74]. We decompose a query graph to smaller
substructures, compute/estimate the counts for the substructures
decomposed, and aggregate the individual counts for substructures
decomposed as the final result. The key idea behind such a divide
and conquer paradigm can be expressed by a formula in Eq. (2).

dq)=¢( > ols) wisi) )

si€S(q)
Here, a query graph, g, is decomposed into a set of substructures
S(q) = {s1,-- - ,sn}. The function o(s;) is an estimated count of the

substructure s; and w(s;) is an optional weight. }; is an aggregation
function that aggregates the weighted count followed by a possi-
ble post correction ¢. Based on the key idea, for exact counting
algorithms [8, 9, 66], the formula of Eq. (2) is elaborated based on a
specific decomposition strategy where the relationships between
the substructures are determined to ensure the exact count. The
existing approaches can support query graph up to 5 nodes, as the
relationships between the substructures of a query graph can be
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complex when a query graph is large. For approximate counting
algorithms [23, 40, 46, 74], they need to assume that the counts of
the substructures are independent so that they can aggregate total
count by summation or multiplication using Eq. (2). This indepen-
dent assumption is the main cause of the estimation error and the
accuracy degrades in particular when a query graph is large.

In this work, we model LSS as a regression model, and we learn
an estimation formula by parameterizing the functions o(:), w(-)
and ¢(-) used in Eq. (2) using neural networks. As a regression
model, LSS takes a query graph q as input and outputs the estima-
tion, denoted as cg(q), in a similar fashion of Eq. (2). LSS is trained
by minimizing the mean-squared-error (MSE) over a set of labeled
training queries Q as shown in Eq. (3).

2 <(q)
co(q)

L1eg(Q:0) = — 3 |loge(q) - logco(@)’ = = 3 log )
Q] | 24

q€Q 10
To achieve an average low relative error, the true count c(q) and

co(q) are transformed to logarithmic scale. It is worth noting that
(@)
co(q)
geometric mean of q-error, and minimizing the mean-squared-error

(Eq. (3)) further imposes higher weights on larger g-error over the
average due to the square [25].

minimizing the average of log is equivalent to minimize the

4.2 LSS Architecture

The architecture of LSS is shown in Fig. 2. First, a query graph
q = (Vg, Eq, L, %) is decomposed into a set of substructures S(q) =
{s1, - -+ sn}, where s; is a subgraph s; = (V}, E;, L, ). The decom-
position should be complete in a sense that Vg = U, e5(4)Vi and
Eg = Ug;es(¢)Ei- In addition, in order to learn the interrelated sub-
structures for counting, it is expected that s; N s; is not disjoint
for i # j. We take a simple but effective approach to determine a
substructure s;. In brief, for a n-node query graph g, we construct a
I-hop BFS (Breadth-First Search) tree rooted at every node in g, and
there are in total n BFS-trees in S(g). Second, a multi-layer graph
neural network (GNN) is constructed to encode every s; € S(q) into
a fixed-length vector, which serves as the function o(-) in Eq. (2).
Third, a self-attention layer is used which is to learn a weighting
function w(-) in Eq. (2), from the n substructures of a n-node query
graph q. Fourth, we sum up the encoding of substructures, o(s;),
weighted by their weights w(s;) to acquire query-level representa-
tion vector. Fifth, a multilayer perceptron (MLP) finally takes this
query-level representation as input and outputs the estimated count
corresponding to the function ¢(-) in Eq. (2).

The LSS forward propagation algorithm is listed in Algorithm 1,
which takes a query graph ¢ as input and output the log-scale
estimated count log cg(q). We elaborate on the details of each com-
ponent of LSS step by step, where an input query graph g is decom-
posed into a substructure set S(q) as discussed in line 1.



Algorithm 1: LSS Forward Propagation

Input: a query graph g, aggregate functions f_;{l >, N ;IK),
combine functions fc(,l), cee éK), weights of attention layer
Wi, W
Output: log ce(q)
1 S(q) < Decompose(q)
2 fors; = (V;, E;) € S(q) do
3 for k «— 1to K do
4 for v € V; do
k k k—
5 ) — £ (el u e N(@)))
k k k- k
6 e — 98, )
7 hs; Readout({e(f)lv eVi})

8 Hy « Concat(hs,, - - - , hs,)
9 A« soﬂmax(%tanh(MHg))
10 Eg < AxHyg

11 eq < Flatten(Eg)

12 log ce(q) < MLP(eq)

GNN. A K-layer GNN is constructed to process one substructure s;
(line 3-7), and generate a per-substructure representation ks, (line 7)
at a time. The K-layer GNN [28, 83, 88] follows a neighborhood
aggregation paradigm to update the representation of a node by
aggregating the representations of its neighbors in K iterations.
Note that GNN uses the graph structure and node features to learn a
representation vector for each node, or for the entire graph. Let egjk)
denote the representation of a node v generated in the k-th iteration.
In the GNN k-th iteration (layer), for a node v, an aggregate function

f _(7]; )() aggregates the representations of the neighbors of v that
are generated in the (k-1)-th iteration (line 5). Then, a combine

function fé,k) () updates the representation of v by the aggregated

representation ag,k) and the previous representation eFY tself

(line 6). The functions f. g )(~) and fé.k)(-) are neural networks, e.g.,
linear transformation with non-linearity and optional Dropout [73]
for preventing overfitting. To obtain a representation for the entire
substructure s;, GNN applies a function Readout to aggregate the
node representations from the final iteration (line 7). The function
is a simple permutation invariant function such as summation or
a more sophisticated pooling function [91]. To summarize, GNN
processes every substructure s; and outputs a representation hg,
for each s;, respectively.

We investigated popular GNNs, including the vanilla Graph
Convolutional Network (GCN) [45], Graph Attention Network
(GAT) [83], GraphSAGE [28], and Graph Isomorphism Network
(GIN) [88]. Different GNNs are different from their aggregate (f#(-)),
combine (f¢(+)) and Readout functions. [88] proves that the distin-
guishing capability of GNN is as powerful as the graph isomorphism
test, Weisfeiler-Lehman (WL) test [87], if the aggregate, combine
and Readout functions are injective. Different from GCN, GAT and
GraphSAGE, GIN uses MLP as the aggregate and combine functions
and summation as Readout, which is proved to be injective. There-
fore, GIN is as powerful as WL test. More specifically, it indicates
that for two substructures s; and sy, if s; and sz are isomorphic,
their graph-level representation hg,, hs, are equal under zero train-
ing error assumption. The property of GIN is consistent with the
inductive bias of the subgraph counting task, i.e., if s; and sy are

isomorphic, the true count of s; and s, are equal for both homo-
morphism and isomorphism. To this end, we use GIN as the GNN
component of LSS.

We can extend LSS to support edge-labels by leveraging edge
features in the aggregation function in line 5:

) R ((Concat(elf ., e))lu € N()}) (4)
Here, ei?l)) is the initial edge features of edge (u, v), which is concate-
nated with the node representation and transformed by the neural

network defined by f f; ) of the k-th layer. Since vector concatena-
tion is also injective, this extension does not violate the expressive
power of GIN.

Self-attention and MLP. In the self-attention stage, the n sub-
structure representation vectors are concatenated to a matrix Hg
(line 8) and Hy is processed by the self-attention mechanism [51, 82].
Intuitively, the attention mechanism is for multiple experts to rate
the importance of the substructures in independent perspectives,
with which a rating matrix A is generated (line 9). In line 9, the self-
attention mechanism is implemented by a two-layer MLP without
bias, where the first layer has weight matrix W; and is activated
by the nonlinear tanh, and the second layer has weight W, and
is activated by softmax. By multiplying the rating matrix A with
the concatenated matrix Hq, we obtain a final query-level repre-
sentation E4 in line 10. The size of matrix E4 is independent to
the size of a query graph and is only controlled by the model’s
hyper-parameters. It is worth noting that the self-attention layer is
invariant to permutations of the substructure set S(g). In the end,
Eq is flattened to a long vector eq for the query graph g (line 11)
and pass through an MLP to generate the estimated count (line 12).

4.3 Feature Encoding

Encoding initial node/edge representation e(z?) / eﬁ)z), for a substruc-
ture s; is important in learning. The one-hot encoding by GNN is
to represent the attribute features [45, 88] for node classification
and link prediction. Such sparse encoding is lack of insight for the
analytical subgraph counting, which is related to both a larger data
graph and a smaller query graph with labels. It is worth noting
that the labels of a query node/edge serve as the predicates of the
query, and are used to filter nodes/edges on the data graph. We pro-
pose frequency-based encoding and pre-trained embedding-based
encoding to encode label information and topological structure.

Frequency-based Encoding. The frequency-based features en-
code the filter capability of a query node/edge regarding the data
graph. We illustrate the encoding using node-labels, which can be
adapted for edge-labels in a similar way. For a data graph G, we
denote the number of occurrence of a node-label I as F(I) = |[{v |] €
L(v) for v € V}|. The node representation for v in a query graph g,
e(z?), is encoded as a |X|-dimensional vector, eg?) € Rlz‘, where the
i-th dimension corresponds to the i-th node-label /; € ¥. The value

of e(z?)[i] is the fraction of the nodes in G can be matched to v. In

detail, if node v is associated with a node-label [;, e(z?)[i] will be set
to F(I;)/|V|, otherwise eg))[i] will be set to 1.0.

Embedding-based Encoding. The frequency-based encoding takes
the attribute frequency of the data graph into account, but fails to
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Figure 3: A data graph G & its label-augmented graph G|,

leverage the topology of the data graph G. An encoding to encode
the topological structure of the data graph together with its labels
is needed. As feeding GNN a pre-trained and unsupervised embed-
ding as node features can boost the performance, we pre-train a
node-label embedding for the data graph G to enhance the query
graph encoding. To preserve the topological property of the data
graph G together with its labels (X), we construct a label augmented
graph G, = (VU VL, EUE}) for G = (V,E,L,%). Here V is a set
of nodes where a node represents a label in ¥, and there are |X|
nodes in Vy. Ey is a set of edges where an edge is between a node,
v, in V with a node, [, in V7, if v has the node-label [ that the node [
corresponds to. Fig. 3(b) shows the label-augmented graph G, for a
small data graph G in Fig. 3(a). We use a scalable, task-independent
graph embedding algorithm (e.g., DeepWalk [65], node2vec [27],
ProNE [93]) to pre-train a node embedding for the label-augmented
graph Gr. With the pre-trained label embedding, we encode ev-

ery node in a query graph g. For a node v in g, we set eg)) to be
YleL(v) €’ (1), where e’(l) is the pre-trained embedding of the label
[ in G, if v has the label I. A node v will have an all-zero vector if

it does not have any labels.

Concatenated Encoding. The concatenated encoding, eg?) for a
node v in a query graph q is to encode a node by concatenating the
frequency-based encoding and embedding-based encoding.

5 Active Learning for LSS

We first introduce active learning (AL) in brief. A regular ML task
is to train a model ® by minimizing the empirical loss measured by
a loss function £ on the training data , and produce the predictive
value for the test data X7, where X1 and Xy are assumed to be
randomly sampled from an underlying distribution. The idea of AL
is to enhance the limited number of training data by selecting a
collection of informative test data X4 C Xy adaptively based on
the model © to update the model ®. With the enhanced training
data X 4, the model tends to learn effectively and produce better
prediction results. This procedure repeats until a stop criterion
is reached (e.g., exhausting of labeling budget, reaching a fixed
number of iterations, or a small enough loss). The key issue in AL
is its strategy of selecting the informative test data, which has
different trade-offs. Choosing an effective and efficient strategy
depends on the specific ML task, the optimization goal, as well as
the data distribution.

The active learning algorithm we use for LSS is by uncertainty
sampling. It attempts to sample from the region of the data which
has the most uncertainty. The algorithm takes an LSS model ©
and a set of unlabeled test query graphs Q as input, and uses an
uncertainty measurement ¢(g; ©) to evaluate the informativeness
of a query graph g under the LSS model ©. We will discuss the

uncertainty function ¢ later in this section. The AL algorithm works
in 4 steps iteratively. @ For each query graph q in the unlabeled
test set Q, we compute its uncertainty score, denoted as uq, using
the function ¢(q; ©). @ The active learner uses the normalized uq
as sampling weights to sample a batch queries Qp from O, and
label g € Qp with its exact subgraph count. ® The training set Q
and the unlabeled test set O are updated, where Q is enlarged as
QU Qp. @ The LSS model is updated with the enlarged training
data Q. In other words, the LSS model is retrained by optimizing
the loss function £(Q; ®). Finally, the stop criterion can be the loss
convergence or an iteration time specified for limited retraining.

The framework of uncertainty sampling is simple. However,
the challenge is how to efficiently evaluate the uncertainty of a
query graph g regarding the model © for a regression task that
predicts a real-value scalar. The existing approaches are based on
model ensemble [22, 47]. By model ensemble, first, a committee
of models is trained over the same training dataset; second, an AL
strategy selects unlabeled data that are with higher disagreement
over the models [47] or that maximize the expected model change
(MEMC) [22], where all models are retrained in every iteration of
AL. But, ensemble learning is cost-inefficient for LSS, especially for
MEMC where gradients computation is required. For a regression
model, an AL strategy is expected variance reduction [55], which
attempts to directly optimize the variance of the model. Unfortu-
nately, it has a high computation complexity O(|Q|K?), where K is
the number of model parameters, since estimating output variance
requires inverting and multiplying parameter matrices for each test
query graph. Note that LSS itself is a neural network model with a
large number of parameters, thereby expected variance reduction
is also intractable.

To fast evaluate uncertainty, we propose a simple yet effective
approach using multi-task learning. The approach we take to help
AL is to incorporate a classification task into LSS model that predicts
the magnitude of the subgraph count. Intuitively, test queries with
ambiguous distribution of count magnitude have more uncertainty
w.r.t. the LSS model. As the classification and regression tasks are
highly correlated, i.e., have constrained output, we share all the
feature representations between them in LSS except the output
by the multi-task learning model [97]. In the output layer of the
MLP in LSS, in addition to one neuron which predicts the estimated
count log cg(q), there are m extra neurons used to perform a multi-
class classification. The output of the m neurons is activated by
a softmax function to achieve a probability distribution pg(y|q)
where pg(y;|q) indicates the probability that the magnitude of cg(g)
isy; € {0, - - - m—1}. We use the cross-entropy loss in Eq. (5) for this
multi-class classification. Here, p(y;|q) is the empirical distribution
of the count magnitude, which is directly determined by the true
count ¢(g).

La1a(@:0) = 157 > Y l-plulg) logpotuila] (9
qeQ i

=1

The overall training loss of LSS is given in Eq. (6), where 1 € [0, 1]
is a coefficient used to balance the classification and regression loss.

L(Q?G)) = (1 - A)-Creg(Q;(a) + ALcla(Q;G)) (6)



With this auxiliary classification task, our active learner supports
three uncertainty functions for the classification task [7, 70] and one
uncertainty function for cross-task [96]: © Confidence. pcon(q; ©) =
1 — max;pe(yi|q), to indicate the gap between a perfect predic-
tion, 1.0, and the highest posterior probability of the model. @
Margin. omar(q; ©) = pe(¥ilg) — pe(yzlq), where 11 and v, are
the first and second most likely predictions under the LSS model
O, respectively. A higher margin indicates the classifier is doubt
in differentiating the top two classes. @ Entropy. pent(q; ©) =
- 2y Po(ylq) log pe(ylq) — the entropy of the posterior probability
distribution. A higher entropy indicates a flat distribution. @ Cross-
Task Consistency. ¢ctc(q; ©) = |41 — logy, co(q)|?, where 7j; is the
most likely prediction of the classification task, log;, ce(q) is the
magnitude of the estimated count in a real-value form, generated
by the regression task. ¢ctc evaluates the data informativeness
by its inconsistency among the classification and regression task,
as their outputs are intertwined [96]. We use the squared error to
measure the discrepancy between the magnitudes predicted by the
classification and regression task.

The four uncertainty functions are used for evaluating query
graph uncertainty. In practice, models can be updated periodically
by collecting batches of test queries followed by computing true
count offline. A preemptive AL strategy, that select queries and
compute the true count in parallel [68], can further reduce the
delay.

6 Experimental Studies

In this section, we give the test setting (§6.1), and report the exten-
sive experiments: @ Compare the accuracy of LSS with state-of-
the-art approximate approaches (§6.2) @ Compare the efficiency of
LSS with the approximate and exact counting approaches (§6.3) @
Validate the effectiveness of the active learner (§6.4) @ Study the
robustness of estimation to varying workloads (§6.5) ® Investigate
the effectiveness of LSS on query optimization (§6.6).

6.1 Experimental Setup

Implementation and Setting. We give the settings of LSS. The
number of GNN layers is 3, where each hidden layer has 64 units and
a Dropout probability 0.5. Such hyper-parameters are set referring
to GNN [28, 83, 88]. We use a two-layer MLP to encode the query-
level representation and generate the final output. The hidden layer
is activated by ReLU and the output layer uses the softmax to
predict the probabilistic distribution for the classification task. We
set the cross task loss coefficient A to 1/3. The number of hidden
units in the attention layer and MLP is tuned within {32, 64, 128}.
For a query graph, we decompose it by computing the 3-hop BFS-
tree rooted at each node. For the embedding-based encoding, we
try 4 scalable task-independent node embedding approaches, i.e.,
DeepWalk [65], node2vec [27], ProNE [93] and NRP [89], and choose
ProNE for LSS due to its efficiency on large data graphs and stable
performance. Following the default setting in [93], the dimension
of the embedding is 128.

The learning framework is built on PyTorch [3] with PyTorch
Geometric [4]. We use Adam optimizer with a decaying learning
rate to train our models. For different datasets, the main hyper-
parameters for training are tuned in their empirical range: learning

Table 2: Real Data Graphs

[ Dataset V] |E| Z[ el Ent() |
aids 253,598 273,955 51 N 0.93
yeast 3,112 12,519 71 - 2.92
youtube 1,134,890 2,987,624 20 - 3.21
wordnet 76,853 120,399 5 - 0.66
eu2005 862,664 16,138,468 40 - 3.68
yago 12,811,197 15,768,516 188,883 91 -

Table 3: Query Sets

[ Type  Dataset  # Queries Query Sizes  Range of c(q) Cov(Z) |
Homo. aids 780 {3,6,9, 12} [107, 10°] 0.03
Homo. yeast 1,205 {4, 8, 16, 24, 32} [10%, 10° 1.0
Homo. wordnet 645 {4,8, 12} [10%, 107 1.0
Homo. eu2005 518 {4, 8} [10%, 10% 1.0
Homo. yago 1,366 {3,6,9,12} [107, 10°] 0.1
Iso. youtube 910 {4, 8, 16, 24, 32} [10%, 107%] 1.0
Iso. eu2005 566 {4, 8} [10°, 101%] 1.0

rate € [1073,107*], epochs € [50, 150], batch size € {1, 2,4, 8}, L2
penalty of Adam € [1073,107°]. We conduct grid search to choose
configurations that have minimal range of g-error for 75%-25%
quantiles under 5-fold cross validation. It is worth mentioning that
the performance of LSS is not sensitive under these configurations.
Both training and prediction are performed on a Linux server with
32 Intel(R) Xeon(R) Silver 4215 CPUs and 128G RAM.

Datasets. We test our LSS and ALSS on five real datasets (Table 2).
The dataset aids and yago are obtained from [1] while others are
obtained from [2], for both data and query graphs. These datasets
cover different domains, including biological networks (aids, yeast),
social network (youtube), web graph (eu2005), lexical network
(wordnet) and Knowledge Graph (yago). aids, yeast, wordnet con-
tain node-labels. For youtube and eu2005, node-labels are randomly
drawn and assigned from a label set, following previous approaches
for node-labeled subgraph matching [15, 29]. In Table 2, for the
data graphs except yago, each node has exact one label. yago also
contains edge-labels, as shown in the column |2 |. We compute the
label entropy (Ent(X)) to evaluate the distribution of labels on data
graph. The entropy is 3¢5, p(I) log p(I), where p(l) is F(1)/|V|, the
fraction that a node is attached to label I. The higher the entropy,
the more skew the node label distribution. The query graphs are
generated by randomly extracting connected subgraphs from the
data graph, where the details can be found in [64, 77]. To obtain
the exact count, we use state-of-the-art enumeration algorithms,
Graphflow [57] and GraphQL [33] to compute homomorphism and
subgraph isomorphism count, respectively. The original query set
contains 1,800 queries except aids and yago. Here, we collect the
queries whose true count can be computed in 2 hours. Table 3
presents the 7 query sets. The last three columns show the prop-
erties of these query sets, where the last column, Cov(Z), denotes
the number of labels per query node on average.

Baseline Approaches. To comprehensively evaluate the effective-
ness and efficiency of LSS, we compare LSS with a recent benchmark
for subgraph matching cardinality estimation, G-CARE [1], which
is originally built for subgraph homomorphism matching.

Homomorphism. The G-CARE benchmark contains 3 algorithms for
graph data, CSET, SumRDF, IMPR and 4 relational-based approaches:

CS, WJ, JSUB and BS. We briefly introduce these 7 algorithms. @
Characteristic Sets (CSET) [60] decomposes a query graph into a



set of star-shaped substructures and estimates the count of indi-
vidual substructure by an index, i.e., characteristic sets. Based on
the independence assumption, the counts of the substructure are
aggregated as the final count. @ SumRDF [74] builds a summary
graph for the data graph, which groups the nodes with similar
labels and proximity. The count is estimated as the expectation of
matchings over all possible data graphs of the summary graph. @
IMPR [23] samples visible subgraphs from the data graph by random
walks, and counts the number of matchings in these subgraphs.
The weighted sum of the counts is returned as an estimation. Note
that IMPR only supports query graph with 3-5 nodes, and does not
support node-labeled query and data graphs. G-CARE revises IMPR
to perform sampling on labeled graphs. @ Correlated Sampling
(CS) [84] samples tuples for each edge of the query graph in a corre-
lated fashion, and performs joins on the sampled tuples. ® Wander
Join (WJ) [50] performs random walks over the data graph to sam-
ple subgraph matchings. It estimates the counts of matchings by
Horvitz-Thompson estimator [38]. ® Join Sampling with Upper
Bounds (JSUB) [98] extracts a maximal acyclic subgraph from the
query graph and estimates the count of this subgraph as the upper
bound of the original query. In G-CARE, its sampling approach is
similar to WJ. @ Bound Sketch (BS) [21] utilizes a set of bounding
formulas [42] to estimate the upper bound of a query. In a net shell,
CSET, SumRDF and BS are summary-based approaches while IMPR,
CS, WJ and JSUB are sampling-based approaches.

Isomorphism. We modify two baselines in G-CARE. One is the em-
pirical best approach, WJ. The other is the native graph approach
IMPR. We modify them to let them sample isomorphism matchings.

Following the setting of G-CARE, we set the sampling ratio to 3%
for sampling-based approaches and the timeout limit to 5 minutes.

6.2 Accuracy on Real Graphs

We investigate the counting accuracy of LSS, including the frequency-
based (LSS-fre), embedding-based (LSS-emb) and the concatenated
(LSS-con) encoding variants. For LSS models, we split the queries
into 80% for training and 20% for testing by stratified sampling on
different query sizes, and the test results are collected for the whole
query set by 5-fold cross validation. Models are trained without AL.
For yago, edge-labels are incorporated into LSS-emb based on Eq. (4)
with the frequency-based edge encoding, LSS-fre and LSS-con are
not applicable due to the high dimension of a frequency-based node
feature encoding.

Homomorphism. Fig. 4 shows the statistical distribution of q-error
of LSS compared with the 7 baseline approaches on the 5 query
sets in Table 3. The state-of-the-art baseline WJ performs best on
3/6-node query graph of aids and yago, but easily fails on larger
and complex queries, leading to a g-error as large as the true count.
In contrast, LSS consistently predicts accurate counts, and the me-
dians of g-error are smaller than 3 across various sizes of the 4
query sets. More specifically, in Fig. 4, a key observation made is
that the sampling-based algorithms perform well on aids (Fig. 4(a)).
However, for queries of yeast (Fig. 4(b)), wordnet (Fig. 4(c)) and
eu2005 (Fig. 4(d)), their performance is degraded drastically, which
is caused by severe sampling failure. yago (Fig. 4(e)) does not face
severe sampling failure but still has an underestimation problem.
Note that sampling failure indicates the estimator fails to sample
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Figure 5: Percentage of Sampling Failure
valid (partial) matchings for the query graph so that it returns 0
as the estimated count. We do not plot the estimation statistics of
an approach for which all the queries suffer from sampling failure
problem in Fig. 4. Sampling failure is highly related to data dis-
tribution, and the sampling-based approaches fail to explore the
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regions with complex data distribution, i.e., a large number of joins
and predicates, by limited samples. On the contrary, modeling com-
plex data distribution is the advantage of neural network models,
which is the main reason LSS models can achieve stable accuracy
across different datasets and query sizes. Compared with LSS-fre,
LSS-emb and LSS-con can achieve better performance. This result
indicates that the pre-trained ProNE label embedding is effective
for the subgraph counting task, by leveraging the distributional
similarity among the labels in the data graph.

A close observation in Fig. 5 further presents the percentage of
queries that suffer from sampling failure for the 4 query sets. For
aids (Fig. 5(a)), WJ and JSUB rarely fail. However, for yeast (Fig. 5(c))
and eu2005 (Fig. 5(d)), all queries with up to 8 nodes fail under WJ,
CS and JSUB. For wordnet (Fig. 5(b)), the issue is not much severe;
most 4-node queries are free of sampling failure and JSUB has less
failure among the three subsets.

The sampling failure is jointly caused by complex label distribu-
tion on the data and query graphs, as well as their topology. Take
WJ as an example, there is a random walker on the data graph that
samples an edge at a time. When sampling one edge, the walker
samples from the edges that are incident to the current node and
the label constraint of the other node is satisfied. If no such edges,
the sample is failed. The risk of the failure derives from one step
random walk is unaware of whether or not future sampling can ac-
tually find a valid matching. For the query graph, the more attached
labels (number of predicates) and the larger the query size (number
of joins), the higher the failure risk. For the data graph, the more
distinct labels and flatter label distribution, the higher the failure
risk. aids has a skewed label distribution, referring to the low label
entropy in Table 2. Note that the queries of aids have few labels,
referring to the low label density in Table 3. Intuitively, on a skewed
distribution, few predicates querying the top frequent labels makes
the sampler more likely to sample a valid matching. Similar to aids,
wordnet data graph has a skewed label distribution and almost all
labels in the queries are the highest frequency labels in the data
graph. Therefore, the sampling-based approaches perform well on
its 4-node queries, as shown in Fig. 4(c). However, the accuracy
drastically degenerates on larger queries. In our experiments, we
also raise the sampling ratio from 3% to 10% for yeast, wordnet and
eu2005, but the performance gain is slight. Fig. 6 shows the estima-
tion statistics on various range of true count over aids queries. WJ
has low g-error for queries with a small true count (< 10%), where
underestimation has little influence on the relative error.

Finally, we analyze the baseline approaches. For the summary-
based approaches, CSET incurs large error of underestimation due to
its independent assumption. SUmRDF has the underestimation prob-
lem because it assumes the matchings are uniformly distributed
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on all possible data graphs. BS leads to an overestimation as it
computes an upper bound for the join query. For the sampling-
based approaches, apart from the best performed WJ, JSUB also
performs well on small query graphs as it utilizes WJ as the sampler
for acyclic subqueries. IMPR and CS both face underestimation prob-
lem because their sampling strategies fail to sample tuples/graphs
actually contributing to the join results. Recall that IMPR cannot
support query graphs with more than 5 nodes.

Isomorphism. We compare the accuracy of LSS models for iso-
morphism counting against the revised WJ and IMPR, as shown in
Fig. 7. Similar to homomorphism, the severe underestimation of
WJ and IMPR are caused by sampling failure, where all the youtube
queries of up to 16 nodes are failed under WJ.

6.3 Efficiency

We compare the prediction time of LSS with the query execution
time of the baseline algorithms. The setting of LSS models is the
same as Section 6.2.

Homomorphism. The results of average elapsed time are shown
in Fig. 8, where we omit those that timeout the whole query subset
and IMPR’s result for > 4-node queries in Fig. 8. We also compare
with the exact matching algorithm Graphflow (GFlow). From the
medium scale data graph aids (Fig. 8(a)) and wordnet (Fig. 8(c)) to
large data graph eu2005 (Fig. 8(d)) and yago (Fig. 8(e)), our LSS mod-
els consistently outperform all the baselines except CSET. Compared
with the state-of-the-art WJ, the prediction of LSS is 2-6 X faster
on aids, wordnet and yago, and 2 orders faster on eu2005. CSET
performs neither sampling nor matching for online queries. Instead,
it builds indices for star-structure for the data graph offline, and
query the indices for decomposed star substructures of the query
graph. On small data graph yeast (Fig. 8(b)) with only thousands
of nodes and edges, LSS models do not have many advantages,
since sampling-based approaches are efficient. However, the larger
the data graph, the more samples or data they need to process. In
contrast, the prediction cost of a machine learning model is only
determined by its architecture, e.g., number of layers, hidden units.
Therefore, It is more suitable to deploy learned models for large
data graphs. The exact algorithm, GFlow, still consumes long time
on yeast since the true counts are large.

Considering the impact of query graph size. Both SumRDF and
BS are timeout in processing large query graphs. SumRDF needs
to search the matchings on the summarized data graph, which
takes exponential time regarding the query size. BS has to evaluate
multiple bounding formulas whose number is also exponentially
increasing w.r.t. the query size. As query size increases, the elapsed
time of both the sampling-based approaches and LSS grows slowly.
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It is worth noting that, due to sampling failure, the sampling-based
approaches would early terminate in intermediate join step, espe-
cially for large queries. Based on our query decomposition strategy,
the number of substructures that needs processing grows linearly
regarding the number of query node. For the 3 LSS variants, their
prediction time is close. Theoretically, LSS-con could spend longer
time as it takes longer vectors as input. In fact, we can only observe
a slight difference on yeast. This also reflects the prediction time
of neural networks is insensitive to its one layer configuration.

Table 4: Training Time (s) for Homo. Counting

LSS Training

Dataset — e re—Ts5-emh T[55-con Lmbedding
aids 352.10 35966 37540 5484
yeast 145820 126293 1546.05 0.80
wordnet 39030 38052 386.04 20.06
€u2005 250.75 266.45 268.92 719.13
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Isomorphism. Fig. 9 presents the elapsed time of isomorphism
counting on youtube (Fig. 9(a)) and eu2005 (Fig. 9(b)). Also, we
report the query execution time of the exact algorithm, GraphQL
(GQL). LSS outperforms WJ one order on youtube and two orders on
eu2005. On large graphs, IMPR is even much slower than the exact
algorithm and WJ is also slower than GQL for the smaller, 4-node
query graph. The performance advantages of GQL benefit from its
powerful filtering techniques.

Training Time. We report the training time of LSS on 32 CPUs.
For the 4 homomorphism query sets, the training time averaged on
cross validation for 50 epochs is shown in Table 4. The training time
of LSS is mainly determined by the number of training queries and
the epochs, and is independent to the size of the data graph. This is
the advantage of supervised learning; as long as training queries
can be collected, LSS models are scalable for large data graphs. For
LSS-con, as the input of GNN is the longer concatenated vector,
its training time is slightly longer than LSS-fre and LSS-emb. In
addition, training on LSS-emb could be slightly faster than LSS-fre.
We speculate the reason could be its 128 dimension input is well
compatible with the parallel computing architecture. The last col-
umn ‘Embedding’ in Table 4 is the single-thread pre-training time
of node embedding spend by ProNE. The time complexity of ProNE
is linear regarding the number of nodes and edges in Gy, the label-
augmented graph [93]. This time complexity makes it scalable for
large data graphs, e.g., eu2005.

6.4 Active Learning

We compare the 4 strategies of ALSS, i.e., classification confidence
(CON), margin (MAR), entropy (ENT) and cross-task consistency (CTC)
with 2 strategies: random selection (RAN) and model ensemble (ENS).
Specifically, RAN selects queries from the test query set randomly.
This strategy is regarded as passive learning but is an effective
heuristics in many cases [59]. For ENS, we train 5 LSS models at one
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Figure 11: g-error of LSS and ALSS models trained on varying workloads

time and each model is fed to 80% of the training data split by 5-fold
cross validation [47]. The final prediction is the geometric mean
of that of the 5 models and the variance serves as the uncertainty.
Once newly training data obtained, all the 5 models need retraining.

We test the aids query set as the queries are evenly distributed on
various sizes and true counts. We split the whole query set into 60%
for training a base LSS model, 20% as the selection pool Q and 20%
as the test set Q7. Given the base model (5 models for ENS) trained
by 50 epochs, we apply 2 iterations uncertainty sampling since
the retraining would not be frequent. In one iteration, 50 queries
are selected from O and added into the training set, followed by
50 epochs retraining for model update. Fig. 10(a) shows the final
regression loss on the test query subsets, and Fig. 10(b) shows the
average L1-loss compared with the original test result (ORI) on the
base model. The average L1-loss, 2 gc0, | log ¢(q)—log co(9)|/|10T|
reflects the average logarithmic g-error. Fig 10 demonstrates that
adding new training data helps to improve the generalization capa-
bility of LSS, for both passive (RAN) and active learning (CON, MAR,
ENT, CTC, and ENS). Compared with RAN, the active learning strate-
gies are more effective in reducing the prediction errors. Among the
5 active learning strategies, ENT and CTC are most effective whereas
MAR and CON have relatively worse performance. Recall that CON
and MAR only consider the top-1 and top-2 likely magnitude of the
count, respectively. As the estimated count always fall into two
adjacent magnitudes, the uncertainty cannot be well reflected by
only two probabilities. Note that the training cost of ENS is roughly
5 times of the strategies of ALSS. Fig. 10(c) further shows a detailed
error distribution on different query sizes. Also, all the strategies
attempt to shrink the min-max error range and CTC, ENT and ENS
are more effective. We find that fine-tuning the model is not always
beneficial to all queries, e.g., 9-node queries in Fig. 10(c).

Note that the target of AL in LSS is not to narrow down the
data complexity. LSS is a complex neural network model, and we
cannot make reasonable assumptions for the distribution of the
query graphs or the true counts as statistical learning does [30, 59].
Instead, the active learning of LSS aims to perform more efficient
model update compared with passive learning, under equivalent
data volume.

6.5 Robustness to Workload Shifts

To study the LSS robustness, we sample a large pool of queries by
extracting 3/6/9/12-node subgraphs from the aids data graph. The
number of testing queries is fixed 1,440, and is divided into 4 sets
where one is 360. One set is used for testing 3/6/9/12-node queries
respectively. The total number of training queries is 900. We trained
the 3 LSS variants over 5 workloads independently, by varying the
fraction of large/small queries within {2:8, 4:6, 5:5, 6:4, 8:2}, where
3/6-node queries are regarded as small and 9/12-node queries are

large. For each LSS model, we further apply AL to update the model
2 times, one with 50 queries selected by cross-task consistency
(CTC). Fig. 11 shows the testing g-error of the 30 models, i.e., 3 LSS
and their ALSS variations trained over 5 workloads.

The key observation is that the testing performance is robust
when workloads vary, particularly for LSS-emb. As query workload
changes, the g-error varies over small queries mainly, but the fluc-
tuation would not surpass one order for LSS-emb. We explain it.
Due to query decomposition, large queries can benefit from small
queries as the GNN is well trained. This also suggests that we can
use more small queries or postpone training large queries in prac-
tice, because small queries are cheaper to process. As observed in
testing, AL has the ability to balance the uneven query distribution
by selecting more queries that appear less in the initial training set.
Thus, ALSS always achieves better performance than LSS. And AL
brings remarkable improvement on small queries since the possible
world of small queries are rather smaller.

6.6 Query Optimization by LSS

We discuss how LSS can be integrated into query optimization
in state-of-the-art systems [5, 6, 10, 92] to support complex self-
joins over one relation. This is motivated by the fact that such
join approaches [5, 6, 10, 92] are shown efficient to enumerate sub-
graph matchings by homomorphism. One representative system is
EmptyHeaded [5, 6], which uses multi-way joins to speed up sub-
graph enumeration. In such systems, a key issue is how to support
cyclic join queries, as self-joins are complex for subgraph enumera-
tion. The technique used is to find a tree-structured join plan by
tree-width decomposition (e.g., GHD for Generalized Hypertree
Decomposition), where joins among the tree-nodes are acyclic, but
joins in a tree-node may be cyclic. In brief, consider a cyclic join
Ry > Ry »a -+ >a Ry, where all k relations are for one relation
(e.g., edge table for the graph G = (V, E, L, X)) but renamed. GHD
finds I (< k) relations R,, for 1 < i < I, where Ry, = » A(1;)
and A(7;) is a subset of input relations of the cyclic join, such that
Rz, >4 Ry, < -+ >4 Ry is an acyclic join whose result is the same
as the original cyclic join. It is critical to select a good GHD, as it
determines the query processing cost. In the GHD-based systems,
the cost of each GHD-based plan is p* = max; .; p(A(z;)), where
p(A(r;)) is fractional edge covering number [26]. And, for any R,
it satisfies |RTI.| < |E|p* based on AGM bound [12]. GHD finds a
plan with smaller p* as it tends to contain smaller R;,, and smaller
cost for generating R, and evaluation. However, such estimation
can deviate far from real cost especially when selection predicates
exist [64]. Instead of estimating the size |R;| based on AGM bound,
in this work, we estimate |R;| using LSS. More specifically, we
estimate |Rr,-| by constructing a query graph g = (Vy, Eg, L, X). The
query graph q will be fed into LSS to get its estimated count.
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We investigate how LSS reduces the cost of GHD. The testing
is conducted on yeast, wordnet, and eu2005, ranging from small
to large data graphs. For each data graph, we generate a training
set including 202 3-node, and 608 4-node query graphs, whose la-
bels are randomly assigned, and train a corresponding LSS model.
For testing and comparison, 60 4-node and 210 5-node unlabeled
patterns are generated. For each unlabeled pattern, to evaluate
the influence of label distribution, we vary the number of nodes
that the frequent labels are attached. Here, frequent labels are the
labels whose frequency ranks the top 20% in . We randomly at-
tach frequent labels on zero to all the nodes, and the remaining
nodes are randomly assigned to infrequent labels, resulting in 1,560
deduplicated queries in total.

Here, we use real cardinality as ground truth and set the true cost
of each selected GHD to max; . |Rri | A close observation on the
1,560 test queries is shown in Fig. 12, where ‘freq’ denotes the num-
ber of nodes associated with frequent labels and ‘size’ denotes the
query size. The queries above the line indicate LSS selects the better
plan and the queries below the line indicate AGM selects the better
plan. In general, LSS can recommend GHD with lower cost, even up
to 3-4 orders of magnitude better than AGM over yeast (Fig. 12(a))
and wordnet (Fig. 12(b)). On the large graph eu2005 (Fig. 12(c)), LSS
can effectively reduce the cost, especially for queries with higher
cost (> 10°). For wordnet (Fig. 12(b)) with a skewed label distribu-
tion over only 5 labels, AGM performs well on queries where most
labels are frequent. These queries are close to unlabeled queries so
that they are in accordance with the assumption of AGM. However,
LSS still outperforms AGM on larger queries with infrequent or
frequent-infrequent mixed labels. These results further confirm the
superiority of LSS in modeling complex data distribution.

(b) wordnet

7 Related Work

Subgraph Matching. Subgraph matching has been extensively
studied. A recent analysis for state-of-the-art in-memory algorithms
[11, 14, 15, 17, 41, 71] can be found in [77]. Most of them follow
Ullman’s backtracing search [80], and are optimized in the aspects
of filtering candidate nodes, matching ordering, enumerating par-
tial results, etc. Another line of work transforms the subgraph
matching query to a multi-way join query on a relational database.
Database systems like EmptyHeaded [5] and Graphflow [57] use
worst-case optimal join algorithm [61] to evaluate these subgraph
matching queries in-memory. These algorithms can achieve the
exact subgraph count by enumerating all the matchings.

Exact and Approximate Subgraph Counting. There are many
exact and approximate subgraph counting approaches [69]. For ex-
act counting, approaches in the literature are categorized into enu-
meration and analytic approaches. The enumeration approaches [35,

39, 63] obtain the count via enumerating all the subgraphs. In con-
trast, the analytical approaches solve the count in an analytical
fashion by leveraging the counts of the same or smaller size query
graphs, thereby avoid listing the matching. Two main analytical ap-
proaches are matrix-based [56, 62] and decomposition-based [8, 66].
For approximate subgraph counting, various estimation strategies
have been explored such as path sampling [40, 85], color cod-
ing [19, 20], random walk [23], and graph summarization [60, 74].
Most of above approaches are designed to count graphlets [67],
a.k.a. graph motifs, small, connected graph queries, over a simple
undirected graph. The exact and approximate counting can support
up to 5-node [66] and 10-node query graph [20], respectively. In
addition, they cannot support labeled graphs and the extension
is nontrivial, especially for the analytical-based and approximate
approaches. Those impede their usage on larger general queries.

ML/DL for Cardinality Estimation and AQP. ML/DL models
are exploited to perform cardinality estimation and AQP for RDBMS.
We briefly review ML/DL approaches in Table 1. DBEst [54] builds
kernel density estimation (KDE) models and tree-based regressors
to conduct AQP. DeepDB [34] adopts Sum-Product Networks (SPNs)
to learn the joint probability distribution of attributes. An SQL query
is complied to a product of expectations or probability queries on
the SPNs, where the product is based on independence of the at-
tributes. [79] uses deep generative model, e.g., Variational Autoen-
coder (VAE) to model the joint probability distribution of attributes,
which only support analytical aggregate query on a single table.
[43] estimates multivariate probability distributions of a relation
to perform cardinality estimation by KDE. Multiple joins can be
estimated by building the KDE estimator on pre-computed join
result or an estimation formula that leverages samples from the
multiple relations as well as the models. Deep autoregressive model,
e.g., Masked Autoencoder (MADE), is also adopted to learn the joint
probability distribution [32, 90], which decomposes the joint distri-
bution to a product of conditional distributions. Kipf et. al. propose
a multi-set convolutional neural network (MSCN) to express query
features using sets [44]. Anshuman et. al. [25] use MLP and tree-
based regressor to express multiple attributes range queries. Sun et.
al. [76] extract the features of physical query plan by Tree LSTM
to estimate the query execution cost as well as the cardinality.

8 Conclusion

In this paper, we propose a neural network model as a learned
sketch for subgraph counting over a large data graph, which can be
used to either homomorphism or subgraph isomorphism counting.
In addition, an active learning strategy is devised for the learned
sketch, aiming to perform efficient model updates via selecting
informative query graphs. Our extensive experiments demonstrate
that the learned sketch provides fast and accurate estimation. The
prediction is 2 orders faster than baseline approaches on large data
graphs. And its medians of q-error are smaller than 3 across vari-
ous query sets where state-of-the-art baselines easily fail on large
and complex query graphs, resulting in a severe underestimation.
Furthermore, our study on query optimization of a multi-way join
system indicates that our learned sketch can help the system to
recommend high quality query plans, whose cost can be up to 3
orders of magnitude cheaper than the classical approach.
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