
NeurIPS 2023 poster paper

Equivariant Spatio-Temporal Attentive Graph Networks to

Simulate Physical Dynamics

Liming Wu*, Zhichao Hou*, Jirui Yuan, Yu Rong, Wenbing Huang1

Gaoling School of Artificial Intelligence,

Renmin University of China

December 1, 2023



Outline

Introduction

Main Contributions of Our Work (ESTAG)

Let’s Take a Look at the Experiments

Limitations and Prospects

2 / 21



Physical Dynamics

▶ Target: Predict future states according to the historical trajectories.

▶ Symmetry, such as E(3)-equivariance, is significant in 3D scenarios.

[1]. Xu, Chenxin, et al. ”EqMotion: Equivariant Multi-agent Motion Prediction with Invariant Interaction Reasoning.”

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
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Challenges

▶ Is markovian assumption reasonable?

– It needs to consider unobserved dynamics in the environment.

▶ How to fully leverage the past states?

– RNN? Gradient vanishing. . .

– Attention is all you need!

▶ How to preserve the symmetry?

– At present, the majority of spatio-temporal graph models are only applicable to 2D settings

and struggle to perform effectively in 3D environments.

– Equivariant GNN can make sense!

ESTAG can capture both spatial and temporal dependencies while respecting the underlying

symmetries of dynamics simulation problems.
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What’s the Specialty of Geometric Graph
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Equivariance and Invariance

x⃗t+1,ht+1 = ϕ(x⃗t,ht)

⇓

Rx⃗t+1 + t⃗,ht+1 = ϕ(Rx⃗t + t⃗,ht)

[1]. Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. ”E (n) equivariant graph neural networks.” International

conference on machine learning. PMLR, 2021.
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Overview of ESTAG
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▶ Equivariant Discrete Fourier Transform (EDFT).

▶ Equivariant Spatial Module (ESM).

▶ Equivariant Temporal Attention Module (ETM).

▶ Equivariant Temporal Pooling (ETP).
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EDFT: Extract Periodic Patterns from Input Trajectory

▶ Obtain frequency domain representations. It first translates the node trajectories to ensure

translation invariant frequency features.

f⃗i(k) =

T−1∑
t=0

e−i′ 2π
T kt

(
x⃗i(t)− x⃗(t)

)
,

▶ Calculate the cross-correlation in frequency domain, as edge features in later modules.

Aij(k) = wk(hi)wk(hj)|⟨f⃗i(k), f⃗j(k)⟩|,

▶ Compute the frequency amplitude of each node trajectory, which captures the node-wise

temporal dynamics. This is used to update node representations.

ci(k) = wk(hi)||f⃗i(k)||2.
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Message Passing Alternates between ESM and ETM

Spatial Interaction

mij = ϕm

(
h

(l)
i (t),h

(l)
j (t), ||x⃗(l)

ij (t)||
2,Aij

)
,

h
(l+1)
i (t) = h

(l)
i (t) + ϕh

h
(l)
i (t), ci,

∑
j ̸=i

mij

 ,

a⃗i(t) =
1

|N (i)|
∑

j∈N (i)

x⃗
(l)
ij (t)ϕx(mij),

x⃗
(l+1)
i (t) = x⃗

(l)
i (t) + a⃗i(t),

where, x⃗ij(t) = x⃗i(t)− x⃗j(t).

x⃗ is E(3)-equivariant and h is E(3)-invariant.
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Message Passing Alternates between ESM and ETM

Temporal Dependency

α
(l)
i (ts) =

exp(q
(l)
i (t)⊤k

(l)
i (s))∑t

s=0 exp(q
(l)
i (t)⊤k

(l)
i (s))

,

h
(l+1)
i (t) = h

(l)
i (t) +

t∑
s=0

α
(l)
i (ts)v

(l)
i (s),

x⃗
(l+1)
i (t) = x⃗

(l)
i (t) +

t∑
s=0

α
(l)
i (ts)x⃗

(l)
i (ts)ϕx(v

(l)
i (s)),

where, x⃗i(ts) = x⃗i(t)− x⃗i(s), q
(l)
i (t) = ϕq

(
h

(l)
i (t)

)
.

x⃗ is E(3)-equivariant and h is E(3)-invariant.
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Equivariant Temporal Pooling Layer for the Final Prediction

▶ This layer applies a learned weighted combination of past node coordinates, where the

translation ensures the pooling is equivariant.

x⃗∗
i (T ) = X̂iw + x⃗

(L)
i (T − 1),w ∈ RT−1,

Where,

X̂i = [x⃗
(L)
i (0)− x⃗

(L)
i (T − 1), x⃗

(L)
i (1)− x⃗

(L)
i (T − 1), · · · , x⃗(L)

i (T − 2)− x⃗
(L)
i (T − 1)].

▶ ESTAG is trained via the mean squared error (MSE) loss:

L =

N∑
i=1

||x⃗i(T )− x⃗∗
i (T )||22.
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Molecular Level: ESTAG Achieves the Lowest Prediction Error

Table: Prediction error (×10−3) on MD17 dataset. Results averaged across 3 runs. We do not display
the standard deviation due to its small value.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

Pt-s 15.579 4.457 4.332 13.206 8.958 12.256 6.818 10.269

Pt-m 9.058 2.536 2.688 6.749 6.918 8.122 5.622 7.257

Pt-t 0.715 0.114 0.456 0.596 0.737 0.688 0.688 0.674

EGNN-s 12.056 3.290 2.354 10.635 4.871 8.733 3.154 6.815

EGNN-m 6.237 1.882 1.532 4.842 3.791 4.623 2.516 3.606

EGNN-t 0.625 0.112 0.416 0.513 0.614 0.598 0.577 0.568

ST TFN 0.719 0.122 0.432 0.569 0.688 0.684 0.628 0.669

ST GNN 1.014 0.210 0.487 0.664 0.769 0.789 0.713 0.680

ST SE(3)tr 0.669 0.119 0.428 0.550 0.625 0.630 0.591 0.597

ST EGNN 0.735 0.163 0.245 0.427 0.745 0.687 0.553 0.445

EqMotion 0.721 0.156 0.476 0.600 0.747 0.697 0.691 0.681

STGCN 0.715 0.106 0.456 0.596 0.736 0.682 0.687 0.673

AGL-STAN 0.719 0.106 0.459 0.596 0.601 0.452 0.683 0.515

ESTAG 0.063 0.003 0.099 0.101 0.068 0.047 0.079 0.066
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Protein & Macro Levels: ESTAG Also Performs Well

Table: Prediction error and training time on Protein
dataset. Results averaged across 3 runs.

Method MSE Time(s)

Pt-s 3.260 -

Pt-m 3.302 -

Pt-t 2.022 -

EGNN-s 3.254 1.062

EGNN-m 3.278 1.088

EGNN-t 1.983 1.069

ST GNN 1.871 2.769

ST GMN 1.526 4.705

ST EGNN 1.543 4.705

STGCN 1.578 1.840

AGL-STAN 1.671 1.478

ESTAG 1.471 6.876

Table: Prediction error (×10−1) on Motion dataset.
Results averaged across 3 runs.

Method Walk Basketball

Pt-s 329.474 886.023

Pt-m 127.152 413.306

Pt-t 3.831 15.878

EGNN-s 63.540 749.486

EGNN-m 32.016 335.002

EGNN-t 0.786 12.492

ST GNN 0.441 15.336

ST TFN 0.597 13.709

ST SE(3)TR 0.236 13.851

ST EGNN 0.538 13.199

EqMotion 1.011 4.893

STGCN 0.062 4.919

AGL-STAN 0.037 5.734

ESTAG 0.040 0.746
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Visualization–MD17(SALICYLIC)

We highlight the main difference in red rectangles, such as the absence and incorrect types of

chemical bonds.

Ground Truth ESTAG ST_EGNN

MSE=0.088 MSE=0.654
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Visualization–Protein & Motion

Alpha helix

Alpha helix

Alpha helix

Alpha helix

Comparison between ESTAG and

ST EGNN. The ground truths are in

red while the predicted states are in

blue.
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Visualization–Rollout

Here we recurrently predict the future frames in a rollout manner, where the currently-predicted

frame will be used as the input for the next frame prediction.

0 2 4 6 8
Step

10 1

100

101

M
SE

 (×
10

3 )

ASPIRIN

ESTAG
GNN
STGCN
ST_EGNN

0 2 4 6 8
Step

10 1

100

101

M
SE

 (×
10

3 )

SALICYLIC

ESTAG
GNN
STGCN
ST_EGNN

0 2 4 6 8
Step

100

101

M
SE

 (×
10

3 )

TOLUENE

ESTAG
GNN
STGCN
ST_EGNN

18 / 21



Outline

Introduction

Main Contributions of Our Work (ESTAG)

Let’s Take a Look at the Experiments

Limitations and Prospects

19 / 21



Future Improvements

▶ Performance enhancements are required when dealing with more challenging systems.

– The superiority of ESTAG on protein dataset is not as obvious as that on molecule and motion

datasets, owing to various kinds of physical interaction between different amino acids, let

along each amino acid compose of a certain number of atoms

▶ It is also promising to extend our model to multi-scale GNN, which is useful particularly for

industrial-level applications involving huge graphs.
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The End

Thanks!!
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