Inductive Attributed Community Search: to Learn Communities across Graphs

Shuheng Fang[†], Kangfei Zhao [∮], Yu Rong^{*}, Zhixun Li[†], Jeffrey Xu Yu[†] The Chinese University of Hong Kong[†] Beijing Institute of Technology [∮] Alibaba DAMO Academy^{*} VLDB 2024

Background: Attributed Community Search

- Community Search (CS)
 - For a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, given a node set $\mathcal{V}_q \subseteq \mathcal{V}$ as a query q
 - Find the query-dependent community $C_q \subseteq \mathcal{V}$, where the nodes in C_q are intensively intra-connected
- Attributed Community Search (ACS)
 - Satisfy both structure cohesiveness and attributes homogeneity for a given query that consists of query nodes and query attributes.
- Real applications
 - Social network analysis
 - Recommendation systems
 - Bioinformatics and fraud detection

Background: Learning-based Community Search Approaches

- GNN-based method: recasting the community membership determination to a classification task
- AQD-GNN/ICS-GNN
 - Their trained models are tailored for specific graph/community
- ICS-GNN/COCLEP/CommunityAF/CGNP
 - Only support single-node query
 - COCLEP & CommunityAF have a limited inductive ability as they rely on the natural generalization of GNN
 - CGNP utilizes meta-learning approach and has inductive ability

Background: Learning-based Community Search Approaches

Approaches	Single-node Query	Multi-node Query	Attributed Query	Induction	
AQD-GNN [29]	✓	~	~	×	
ICS-GNN [21]	✓	×	×	×	
CommunityAF [11]	✓	×	×	X	
COCLEP [35]	✓	×	×	×	
CGNP [17]	✓	×	×	✓	
IACS (Ours)	✓	✓	✓	v	

Table 1: Learning-based Community Search Approaches

Problem Statement

- Attributed Community Search (ACS)
 - For an attributed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A})$, given a query $q = (\mathcal{V}_q, \mathcal{A}_q)$, where $\mathcal{V}_q \subseteq \mathcal{V}$ and $\mathcal{A}_q \subseteq \mathcal{A}$
 - Find the query-dependent community $C_q \subseteq \mathcal{V}$, where the nodes in C_q are intensively intra-connected and the attributes are similar

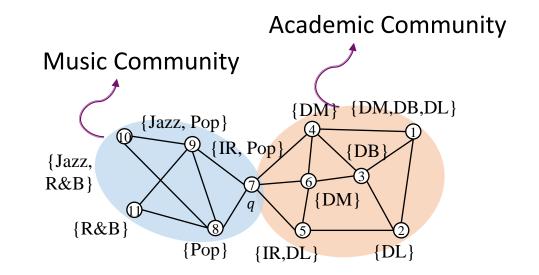
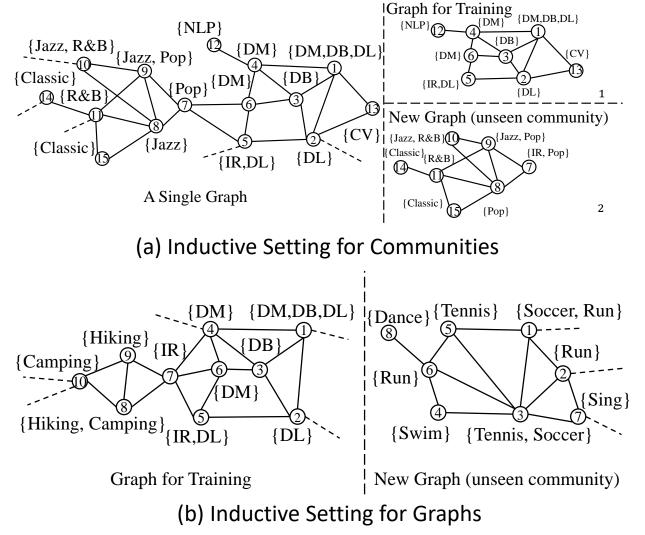


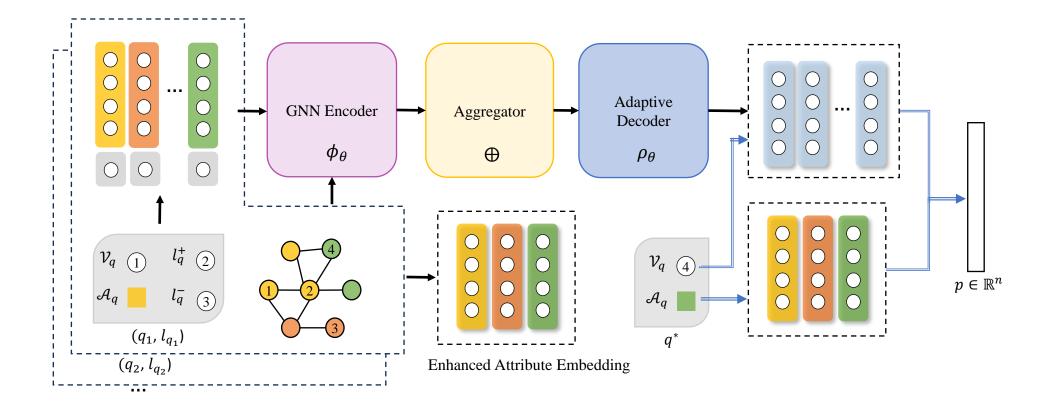
Fig 1. query-dependent community with different attributes.

Problem Statement

Empower the model to generalize and adapt to new communities and graphs by inductive learning


For new communities

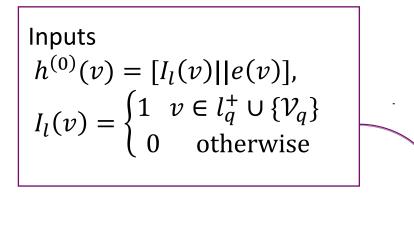
- Queries from $\{C_{q_1}, \dots, C_{q_i}\}$ in graph G for training
- Queries q* from a new community
 C_{q*} for test

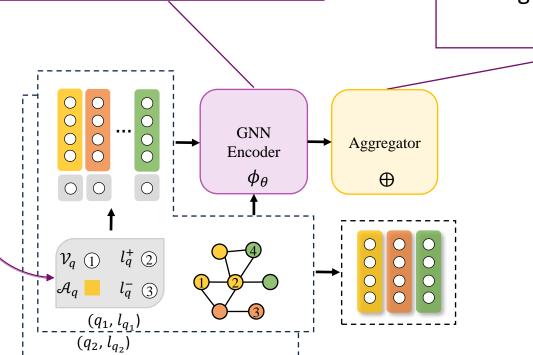

• i.e.,
$$C_{q_1} \cap C_{q^*} = \emptyset, ..., C_{q_i} \cap C_{q^*}$$

> For new graphs

- Queries from graph *G* for training
- Queries from new graph \mathcal{G}^* for test

IACS Architecture

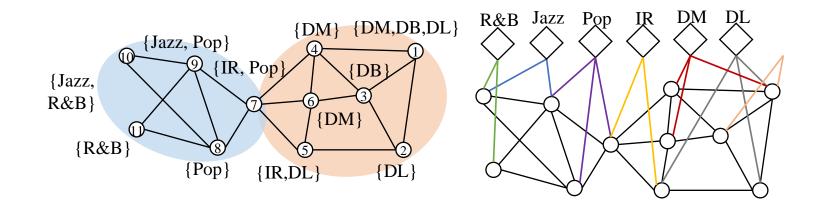



IACS
$$p(y_{q^*}|q^*,\mathcal{T}) = \rho_{\theta}\left(q^*, \bigoplus_{(q,l_q)\in(Q,L)} \phi_{\theta}(q,l_q)\right)$$

GNN Encoder ϕ_{θ} (q, l_q)

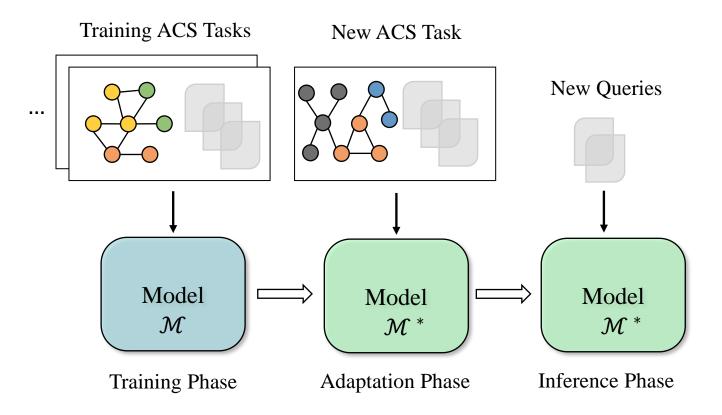
- k-th layer aggregate: $a^{(k)}(v) \leftarrow f^{(k)}_{\mathcal{A}}(\{h^{(k-1)}(u) \mid u \in N(v)\})$
- k-th layer combine: $h^{(k)}(v) \leftarrow f_{\mathcal{C}}^{(k)}(h^{(k-1)}(v), a^{(k)}(v))$

Aggregator \bigoplus Permutation invariant operator, average: $H = \frac{1}{|Q|} \sum_{q \in Q} H_q$



Enhanced Attribute Encoding

Construct attribute-augmented graph


- $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A}) \rightarrow \mathcal{G}_{\mathcal{A}} = (\mathcal{V} \cup \mathcal{V}_{\mathcal{A}}, \mathcal{E} \cup \mathcal{E}_{\mathcal{A}})$
- Use a scalable, task-independent graph embedding algorithm, ProNE
- Pretrain a node embedding for the attributed-augmented graph $\mathcal{G}_{\mathcal{A}}$

$$e(v) = \sum_{a \in \mathcal{A}(v)} e_a$$

Gating mechanism $\delta = \operatorname{sigmod}(W_{\delta}H), \epsilon = W_{\epsilon}H,$ IACS $\hat{\gamma} = \gamma \odot \delta + \epsilon \odot (1 - \delta), \hat{\beta} = \beta \odot \delta + \epsilon \odot (1 - \delta),$ $\widehat{H} = \widehat{\gamma} \odot H + \widehat{\beta}$ Adaptive Decoder $\rho_{\theta}(q^*, H)$ →
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→ Adaptive $p\in \mathbb{R}^n$ Feature-wise Linear Modulation (FiLM) ۲ Decoder $\gamma = W_{\gamma}H, \ \beta = W_{\beta}H,$ ρ_{θ} $\widehat{H} = \gamma \odot H + \beta$ Concatenate query node embedding and query attribute ۲ 0 \mathcal{V}_q (4) embedding $e_{\mathcal{V}_{q^*}} = \frac{1}{|\mathcal{V}_{q^*}|} \sum_{v \in \mathcal{V}_{q^*}} \widehat{H}(v), e_{\mathcal{A}_{q^*}} = \frac{1}{|\mathcal{A}_{q^*}|} \sum_{a \in \mathcal{A}_{q^*}} e_a$ q^* A new ACS query $e_{q^*} = \mathsf{MLP}(e_{\mathcal{V}_{q^*}} || e_{\mathcal{A}_{q^*}})$ $q^* = (\mathcal{V}_{q^*}, \mathcal{A}_{q^*})$ Inner Product Decoder: $p(\hat{l}_{a^*} | q^*, \mathcal{T}) = \text{sigmoid}(\langle e_{a^*}, \hat{H} \rangle)$ ullet**Binary Cross Entropy loss** $\mathcal{L} = \sum_{\mathcal{T}_i \in \mathcal{D}} \sum_{(q, l_q) \in (\mathcal{Q}_i, L_i)} -\log p(\hat{l_q} | q, \mathcal{T}_i)$ $= \sum_{\mathcal{I}_i \in \mathcal{D}} \sum_{(q, l_a) \in (\mathcal{Q}_i, L_i)} (-\sum_{v^+ \in l_a^+} \log (\hat{y}(v^+)) - \sum_{v^- \in l_q^-} \log (1 - \hat{y}(v^-))) \Big|_{10}$

IACS Workflow

Experimental Studies: Setup

- Model
 - encoder: 3-layer GCN, GraphSAGE, GIN, GAT.
 - decoder: FiLM + Inner product, FiLM with gating mechanism + Inner product, inner product

• Baselines

- 3 algorithmic approaches
- 3 supervised-learning based approaches
- 2 meta-learning approaches

					-				
Dataset	$ \mathcal{G} $	$ \mathcal{V} $	$ \mathcal{S} $	$ \mathcal{A} $	$ \mathcal{C} $	graph des.	attribute des.	community des.	# tasks
Arxiv [54]	1	169,343	1,166,243	N/A	40	paper citation	NA	research topics	1,000
Amazon2M [13]	1	2,449,029	61,859,140	N/A	47	product co-purchasing	NA	product categories	5,000
Cora [57]	1	2,708	5,429	1,433	7	paper citation	paper keywords	research topics	192
Citeseer [57]	1	3,327	4,732	3,703	6	paper citation	paper keywords	research topics	192
Reddit [24]	1	232,965	114,615,892	1,164	50	post co-comment	synthetic	post categories	1,000
Facebook [33]	10	4,039	88,234	2,281	193	social friendship	user profiles	friend circles	10
Twitter [33]	973	81,306	1,768,149	512,985	4,065	social friendship	user profiles	friend circles	973

Table 3: The Profiles of Dataset

Experiential Studies: Effectiveness

	A 1		4-shot		8-shot				
Dataset	Approach	Pre	Rec	F1	Pre	Rec	F1		
	CTC	$54.23_{\pm 0.53}$	$2.16_{\pm 0.04}$	$4.15_{\pm 0.09}$	$54.04_{\pm 0.72}$	$2.16_{\pm 0.05}$	$4.15_{\pm 0.09}$		
	ICS-GNN	62.72 ± 0.26	21.09 ± 0.07	$31.57_{\pm 0.10}$	62.53 ± 0.36	21.12 ± 0.05	$31.57_{\pm 0.08}$		
	QD-GNN	$59.97_{\pm 0.41}$	$83.60_{\pm 1.18}$	$69.84_{\pm 0.47}$	$58.91_{\pm 0.29}$	$89.62_{\pm 1.14}$	$71.09_{\pm 0.29}$		
>	Supervise	$67.99_{\pm 0.33}$	$69.78_{\pm 1.49}$	$68.87_{\pm 0.86}$	$69.09_{\pm 0.39}$	$74.29_{\pm 0.98}$	71.60 ± 0.38		
Arxiv	MAML	$63.51_{\pm 1.07}$	$60.25_{\pm 2.50}$	$61.81_{\pm 1.42}$	$62.77_{\pm 0.72}$	$60.34_{\pm 3.64}$	$61.48_{\pm 1,82}$		
<	FeatTrans	$65.35_{\pm 0.64}$	$55.18_{\pm 1.81}$	$59.81_{\pm 0.88}$	64.18 ± 0.69	$55.42_{\pm 1.09}$	$59.47_{\pm 0.74}$		
	IACS	$63.65_{\pm 0.62}$	$89.26_{\pm 1.05}$	$74.31_{\pm 0.37}$	$64.14_{\pm 0.49}$	$90.21_{\pm 1.31}$	74.97 ± 0.31		
	IACS-G	$59.75_{\pm 0.42}$	$97.99_{\pm 0.76}$	$74.23_{\pm 0.13}$	65.06 ± 0.81	$88.12_{\pm 1.65}$	74.84 _{±0.36}		
	IACS-P	$61.99_{\pm 2.56}$	$92.63_{\pm 5.77}$	$74.12_{\pm 0.21}$	$65.45_{\pm 0.42}$	$87.07_{\pm 0.53}$	$74.72_{\pm 0.24}$		
	CTC	$80.30_{\pm 0.35}$	$4.06_{\pm 0.02}$	$7.73_{\pm 0.04}$	$80.27_{\pm 0.27}$	$4.06_{\pm 0.01}$	$7.73_{\pm 0.02}$		
	ICS-GNN	$79.50_{\pm 0.27}$	$6.55_{\pm 0.01}$	12.11 ± 0.02	$79.63_{\pm 0.29}$	6.55 ± 0.02	$12.11_{\pm 0.03}$		
7	QD-GNN	$75.46_{\pm 0.33}$	$95.15_{\pm 0.53}$	$84.17_{\pm 0.04}$	$75.33_{\pm 0.26}$	$96.68_{\pm 0.13}$	$84.67_{\pm 0.21}$		
Amazon2M	Supervise	83.86 ± 0.09	$77.07_{\pm 0.44}$	80.32 ± 0.25	84.46 ± 0.35	80.18 ± 0.52	82.27 ± 0.29		
	MAML	$78.48_{\pm 1.62}$	$65.83_{\pm 8.70}$	$71.38_{\pm 5.59}$	$79.13_{\pm 0.88}$	$62.38_{\pm 4.76}$	$69.66_{\pm 2.83}$		
	FeatTrans	$78.41_{\pm 0.92}$	$57.89_{\pm 1.39}$	$66.60_{\pm 1.14}$	$78.69_{\pm 0.34}$	57.18 ± 1.22	66.22 ± 0.72		
	IACS	$80.52_{\pm 0.34}$	$93.42_{\pm 0.83}$	$86.48_{\pm 0.22}$	$81.44_{\pm 0.75}$	$93.34_{\pm 1.07}$	$86.97_{\pm 0.21}$		
	IACS-G	$79.92_{\pm 0.31}$	$94.25_{\pm 0.93}$	$86.49_{\pm 0.21}$	$80.49_{\pm 0.16}$	$94.60_{\pm 0.52}$	86.98 ± 0.24		
	IACS-P	$79.63_{\pm 0.88}$	$94.77_{\pm 1.09}$	$86.54_{\pm 0.29}$	$80.62_{\pm 0.81}$	$94.86_{\pm 0.74}$	$87.16_{\pm 0.26}$		

Table 4: Overall Performance on Non-Attributed CS (%)

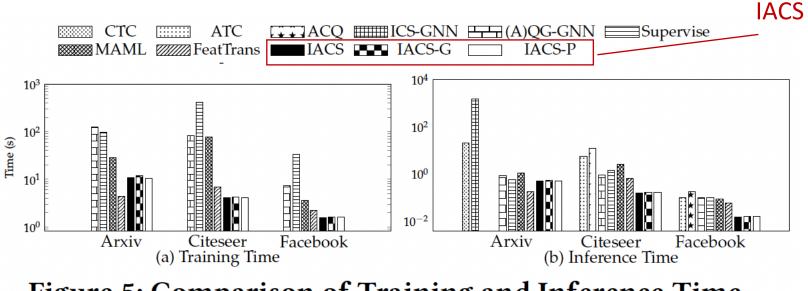
Non-attributed CS

- a) IACS models consistently outperform all the baselines.
- b) The superiority of IACS is primarily evident in its significant improvement in recall (+1.28% compared to the best baseline) while maintaining a relatively high precision (59.75% ~ 81.44%).

Experiential Studies: Effectiveness

						U	▲ <u>*</u>	
r	е	4-shot Rec		F1	Pre	8-shot Rec	F1	Datase
9_	±0.87	5.01 _{±0.17}		$9.24_{\pm 0.29}$	57.83 _{±0.36}	$4.97_{\pm 0.25}$	$9.16_{\pm 0.42}$	
	±2.14	$6.97_{\pm 1.32}$		$12.66_{\pm 2.19}$	$69.15_{\pm 1.43}$	6.79 _{±0.99}	$12.36_{\pm 1.64}$	
)_	±1.04	84.29 _{±7.59}		$64.77_{\pm 2.78}$	$52.26_{\pm 2.06}$	85.15 _{±5.57}	$64.74_{\pm 3.01}$	
5-	±2.00	63.20 _{±1.53}		$61.79_{\pm 1.67}$	$62.30_{\pm 1.88}$	$66.74_{\pm 0.84}$	$64.43_{\pm 1.16}$	ok
3_	±1.61	43.18±4.27	7	$48.46_{\pm 2.45}$	$56.15_{\pm 0.94}$	$45.02_{\pm 3.05}$	$49.93_{\pm 1.94}$	oq
7-	±2.54	$37.97_{\pm 1.38}$		$46.08_{\pm 1.51}$	$58.44_{\pm 1.74}$	$39.86_{\pm 2.17}$	$47.38_{\pm 1.91}$	Facebook
1	±1.55	71.15 _{±1.45}		$67.78_{\pm 0.94}$	67.06 _{±1.45}	$71.48_{\pm 1.84}$	$69.19_{\pm 1.41}$	ш
5-	±0.54	$70.12_{\pm 1.33}$	3	$67.86_{\pm 0.56}$	$67.48_{\pm 1.62}$	$71.90_{\pm 1.98}$	$69.59_{\pm0.87}$	
2	±1.15	70.37 _{±1.43}		$67.84_{\pm 0.66}$	$67.25_{\pm 1.86}$	$72.08_{\pm 0.74}$	$69.57_{\pm 0.98}$	
1	±0.77	39.15 _{±1.68}	8	$53.16_{\pm 1.63}$	83.73 _{±0.87}	$39.00_{\pm 0.91}$	$53.21_{\pm 0.79}$	
4	±0.27	$22.82_{\pm 1.02}$	2	$36.99_{\pm 1.35}$	$98.16_{\pm 0.03}$	$22.49_{\pm 1.20}$	$36.58_{\pm 1.59}$	
	±1.63	89.54 _{±1.89}	9	$87.67_{\pm 1.38}$	85.51 _{±1.73}	$92.20_{\pm 1.39}$	$88.73_{\pm 1.42}$	yoc
	± 1.38	78.14±1.93		$81.95_{\pm 1.51}$	$87.14_{\pm 0.95}$	$80.15_{\pm 0.49}$	83.50 _{±0.49}	ebo
	±0.78	64.46±3.15		$74.66_{\pm 2.27}$	OOM	OOM	OOM	Fac
5-	±2.41	$34.78_{\pm 3.22}$	2	$49.72_{\pm 3.34}$	88.07 _{±0.59}	$36.46_{\pm 2.43}$	$51.53_{\pm 2.40}$	er2
3_	±1.20	84.11 _{±3.84}	4	$84.01_{\pm 1.26}$	$83.50_{\pm 1.69}$	$85.07_{\pm 4.36}$		Twitter2Facebook
1	±1.73	85.33 _{±2.23}	3	$84.54_{\pm 1.14}$				Tw
	±1.28		3	$84.35_{\pm 1.31}$	$85.89_{\pm 1.84}$	$83.21_{\pm 1.72}$	84.51 _{±1.33}	
3 _±	±1.20 ±1.73	$84.11_{\pm 3.84}$ $85.33_{\pm 2.23}$	4 3	$84.01_{\pm 1.26}$ $84.54_{\pm 1.14}$	$\begin{array}{c} 83.50_{\pm 1.69} \\ 86.07_{\pm 0.86} \end{array}$	$85.07_{\pm 4.36}$ $84.01_{\pm 2.63}$	$\frac{84.20_{\pm 1.49}}{85.00_{\pm 1.11}}$	

Table 5: Overall Performance on ACS in Single Graph (%)


Table 6: Overall Performance on ACS in Multiple Graphs (%)

Dataset	Annroach		4-shot		8-shot				
Dataset	Approach	Pre	Rec	F1	Pre	Rec	F1		
	ATC	$60.23_{\pm 5.10}$	11.99 _{±0.88}	$19.97_{\pm 1.26}$	$41.14_{\pm 4.18}$	$11.11_{\pm 3.27}$	$17.22_{\pm 3.71}$		
	ACQ	$38.86_{\pm 3.52}$	66.92 ± 5.79	$48.90_{\pm 1.92}$	$40.60_{\pm 3.06}$	$64.00_{\pm 3.33}$	$49.65_{\pm 3.07}$		
	AQD-GNN	$37.71_{\pm 1.65}$	$96.70_{\pm 5.93}$	$54.26_{\pm 2.59}$	$36.71_{\pm 1.03}$	$96.29_{\pm 4.68}$	$53.14_{\pm 1.75}$		
yoc	Supervise	$59.32_{\pm 1.22}$	$79.61_{\pm 5.37}$	$67.95_{\pm 2.73}$	$64.34_{\pm 1.63}$	$83.38_{\pm 3.20}$	$72.59_{\pm 1.08}$		
Facebook	MAML	$47.06_{\pm 6.12}$	$89.04_{\pm 3.86}$	$59.85_{\pm 8.12}$	$46.12_{\pm 3.30}$	$73.30_{\pm 5.89}$	$56.44_{\pm 2.45}$		
Fac	FeatTrans	$50.11_{\pm 6.62}$	$68.34_{\pm 8.66}$	$56.84_{\pm 4.28}$	$50.82_{\pm 1.16}$	$59.77_{\pm 6.87}$	$72.16_{\pm 3.40}$		
	IACS	$85.61_{\pm 2.16}$	$79.55_{\pm 4.13}$	$78.09_{\pm 4.09}$	$66.13_{\pm 1.62}$	$84.33_{\pm 3.80}$	74.08 ± 1.34		
	IACS-G	$85.75_{\pm 2.27}$	$81.31_{\pm 4.51}$	$77.42_{\pm 3.82}$	$64.87_{\pm 1.67}$	88.17 _{±3.04}	$74.72_{\pm 1.64}$		
	IACS-P	$81.82_{\pm 4.42}$	80.79 _{±2.69}	$77.37_{\pm 4.62}$	$65.92_{\pm 4.20}$	$87.36_{\pm 1.66}$	$75.05_{\pm 2.31}$		
	ATC	$77.92_{\pm 6.75}$	$12.88_{\pm 0.74}$	$22.08_{\pm 1.04}$	$70.30_{\pm 9.71}$	$11.25_{\pm 1.91}$	$19.35_{\pm 3.05}$		
~	ACQ	$68.89_{\pm 0.81}$	$37.21_{\pm 8.31}$	$49.51_{\pm 4.76}$	20.38 ± 0.58	$44.58_{\pm 3.51}$	28.22 ± 0.47		
000	AQD-GNN	$37.49_{\pm 0.49}$	$96.81_{\pm 3.49}$	$37.49_{\pm 1.03}$	$37.61_{\pm 3.45}$	$95.10_{\pm 8.97}$	$53.84_{\pm 4.54}$		
cet	Supervise	$58.12_{\pm 4.20}$	$80.28_{\pm 8.12}$	58.12±5.27	$62.32_{\pm 4.41}$	81.44 _{±4.99}	$70.55_{\pm 4.15}$		
Twitter2Facebook	MAML	38.12 ± 0.42	$97.57_{\pm 1.67}$	38.12 ± 0.37	$37.97_{\pm 1.58}$	$95.01_{\pm 4.40}$	$54.20_{\pm 1.19}$		
	FeatTrans	$38.45_{\pm 0.42}$	$98.05_{\pm 1.04}$	$38.45_{\pm 0.43}$	$38.20_{\pm 0.86}$	97.06 ± 1.39	$54.81_{\pm 0.72}$		
	IACS	$72.10_{\pm 5.43}$	$85.44_{\pm 4.30}$	$72.10_{\pm 1.58}$	66.29 _{±3.99}	$84.90_{\pm 0.58}$	$73.68_{\pm 2.88}$		
	IACS-G	$67.76_{\pm 3.00}$	$86.17_{\pm 1.65}$	$67.76_{\pm 1.80}$	$64.86_{\pm 1.81}$	$86.36_{\pm 3.48}$	$74.05_{\pm 1.94}$		
	IACS-P	$72.38_{\pm 4.80}$	83.69 _{±6.53}	$72.38_{\pm 1.75}$	$65.14_{\pm 0.85}$	$86.07_{\pm 2.36}$	$74.28_{\pm 1.19}$		

ACS

- a) In general, IACS achieves the highest F1 score in most cases (5 out of 6), even when the graphs of training and inference are from different datasets.
- b) The improvement in the 8-shot setting is relatively lower compared to the 4-shot setting.

Experiential Studies: Efficiency

Figure 5: Comparison of Training and Inference Time

• IACS models exhibit faster training and inference time compared to other baselines in most datasets.

Experiential Studies: Streaming Model Adaptation

- The streaming adaptation process leads to higher F1 scores for the streaming model than the original model across a wide range of sequential tasks.
- The results indicate that three IACS models exhibit an improvement ratio of 3% in the streaming adaptation model.

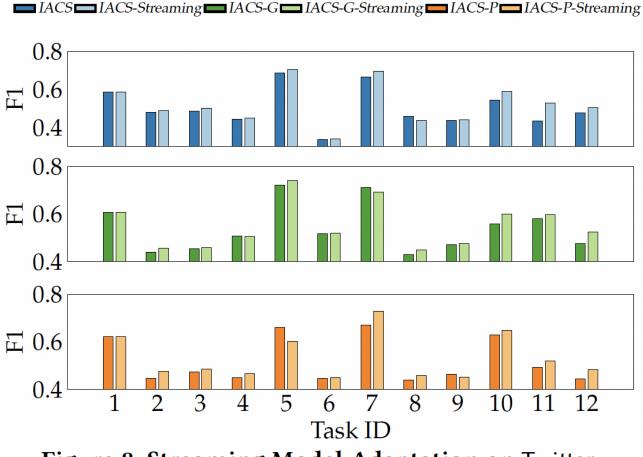
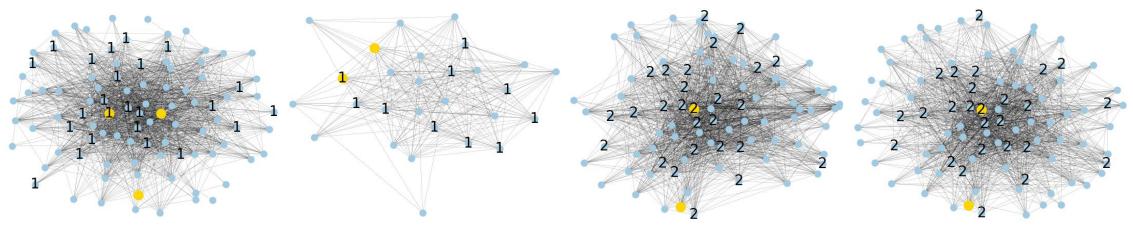



Figure 8: Streaming Model Adaptation on Twitter

Experiential Studies: Case Study

(a) Twitter: Training Communities

(b) Ground-truth Community (c) Predicted Community

- These communities exhibit variations, characterized by heterogeneous topological structures and attribute distributions.
- We observe a notable overlap between the identified communities and the groundtruth, thus confirming the accuracy of our predictions.

Summary

- Leveraging ML/DL based approaches for attributed community search
- Existing learning approaches have limited inductive ability and cannot deal with complex queries.
- Propose Inductive Attributed Community Search (IACS) to infer new queries for different communities/graphs
- Propose a three-stage workflow to fulfill inductive ACS
- IACS achieves better performance on effectiveness and efficiency

Thank you!

Shuheng Fang, The Chinese University of Hong Kong.

shfang@se.cuhk.edu.hk