
1

Finding Critical Users in Social Communities via
Graph Convolutions

Kangfei Zhao∗, Zhiwei Zhang†, Yu Rong‡, Jeffrey Xu Yu∗, Junzhou Huang§
∗The Chinese University of Hong Kong, {kfzhao, yu}@se.cuhk.edu.hk

†Beijing Institute of Technology, cszwzhang@outlook.com
‡Tencent AI Lab, yu.rong@hotmail.com

§University of Texas at Arlington, jzhuang@uta.edu

F

Abstract—Finding critical users whose existence keeps a social com-
munity cohesive and large is an important issue in social networks. In
the literature, such criticalness of a user is measured by the number of
followers who will leave the community together when the user leaves.
By taking a social community as a k-core, which can be computed in
linear time, the problem of finding critical users is to find a set of nodes,
U , with a user-given size b in a k-core community that maximizes the
number of nodes (followers) to be deleted from the k-core when all
nodes in U are deleted. This problem is known to be NP-hard. In the
literature, the state-of-the-art approach, a greedy algorithm is proposed
with no guarantee on the set of nodes U found, since there does not
exist a submodular function the greedy algorithm can use to get a better
answer iteratively. Furthermore, the greedy algorithm designed is to
handle k-core in any social networks such that it does not consider the
structural complexity of a given single graph and cannot get the global
optimal by the local optimal found in iterations.

In this paper, we propose a novel learning-based approach. Dis-
tinguished from traditional experience-based heuristics, we propose a
neural network model, called Self-attentive Core Graph Convolution Net-
work (SCGCN), to capture the hidden structure of the criticalness among
node combinations that break the engagement of a specific social
community. Supervised by sampling node combinations, SCGCN has
the ability to inference the criticalness of unseen combinations of nodes.
To further reduce the sampling and inference space, we propose a
deterministic strategy to prune unpromising nodes on the graph. Our ex-
periments conducted on many real-world graphs show that SCGCN sig-
nificantly improves the quality of the solution compared with the state-
of-the-art greedy algorithm.

Index Terms—social network analysis, k-core collapsion, graph neural
network.

1 INTRODUCTION

Exploring the critical entities in networks has attracted
interests in recent years [1], [2], [3], [4], as motivated by
the fact that there is a need to understand who plays an
important role in a large dense subgraph with possibly
thousands of nodes found for analytical tasks in social net-
works (e.g., biological networks, etc.). This task is beneficial
to many consequent mining tasks such as recommendation
and influence maximization. For instance, in social network
analysis, it is vital to identify the opinion leaders from
existing communities.

To evaluate the criticalness of a user set, U , in a commu-
nity, recent approaches model it by the number of followers,
where the followers of U are the users who will take the
same action to leave the community when the users in U
leave. It is worth mentioning that a follower of U may not
directly connect to any user in U and can be an indirect
follower following some connections to a user in U . The
problem of finding critical users over a social community
is to identify U such that the largest number of nodes
(followers) will be deleted from the social community when
U are deleted.

Zhang et al. studied critical user detection as a collapsed
k-core problem [1]. In brief, it considers a social community
as a k-core for a given k and finds a set of nodes, U , with
a given size b, that will trigger the max number of nodes
to be deleted from the k-core, if all nodes in U are deleted.
As shown in [1], the collapsed k-core problem is non-trivial
and is proven to be NP-hard. In the scope of this paper,
the problem of critical user detection is equivalent to the
collapsed k-core problem. And we use critical user detection
in the following definition as we concentrate on finding the
node set U . To find such U , Zhang et al. in [1] proposed a
greedy algorithm which is the state-of-the-art. We explain
the greedy algorithm in brief. Let f(u) be a function, for
every node u in a k-core community, as the number of nodes
to be deleted from the k-core community when the node u
is deleted. The greedy algorithm will repeatedly select the
node u with the largest f(u) value to be added into U until
|U | = b. The greedy algorithm performs well in practice.
But, as f(u) has been proven to be non-submodular, there is
no error bound for the greedy algorithm to find such a set
of U for any social communities. We show the drawback of
the greedy algorithm using an example.

Example 1.1: DBLP dataset is a collection of researchers
and their publications. We extract a co-author network from
DBLP if two authors have collaborated more than 5 papers,
and show a 20-core community with 119 researchers in
Fig. 1. To find the critical users, U , for b = 3, the greedy
algorithm will identify the red node as the top-1 critical user
in the first iteration, because the red node has the largest

1 2
1'

2'

Fig. 1. Comparison between the greedy algorithm and SCGCN

number of nodes, 20, to be deleted from the community if it
is deleted. After deleting 21 nodes (the critical user and its 20
followers) from the current 20-core, the remaining nodes in
the 20-core have 0 followers, which means that every node
has more than 20 neighbors in the 20-core and there is no
follower from the community for any node to be deleted.
In this case, the greedy algorithm selects the node 1 as the
top-2 critical user in a random fashion. For the top-3 critical
user, it then selects the node 2 which has 4 followers. As
for the greedy algorithm, deleting the two nodes, 1 and 2,
will lead to 6 nodes (the green nodes) to be deleted. In fact,
there is a better answer. Suppose node 1′ as the top-2 critical
user instead. Even though node 1′ itself cannot trigger any
followers to be deleted, the next removal of the top-3 (e.g.,
node 2′) will trigger 21 nodes to be deleted. In total, there are
22 nodes (the yellow nodes) to be deleted from the 20-core
due to the removal of node 1′ and node 2′. 2

As shown in Example 1.1, the greedy algorithm, which
is designed to handle any possible k-core community, has
its limit to find a better set of critical users, U , with a
given size b for a certain k-core community due to the
following two complexities, namely structural complexity,
and combinatorial complexity. Here, structural complexity is
related to the inherent topology of a given community. The
greedy algorithm [1], like most greedy algorithms designed
for solving NP-hard problems, adopts heuristics based on
the problem solely. In an iteration, it is designed with
heuristics to approximate the global optimum by the local
optimum for some graph. The greedy algorithm does not
take the characteristics of the data graph into account. It
may work well for some graphs, but fails for some other
graphs. On the other hand, the combinatorial complexity
is related to the exploration of all possible combinations,
which is prohibitively high.

To address such complexities for detecting critical users,
in this paper, we propose a learning-based approach, which
has achieved remarkable success in approximating complex
functions in a wide range of applications. Different from the
greedy algorithm which uses a fixed f(u) function to select
a node, we learn a specific f(u) function via sampling and
embedding node sets (i.e., partial solutions) from a given
graph. Specifically, a graph neural network model, called
Self-attentive Core Graph Convolution Network (SCGCN) is
proposed to learn a better local approximation function f(u)
in an end-to-end fashion. SCGCN does not only consider the
criticalness of every single node, but also the criticalness for

TABLE 1
Frequently Used Notations

Notations Definitions
G(V,E) An undirected graph with node set V and edge set E.
deg(u,G) The number of adjacent vertices of u in G.
Ck(G) The k-core of G.
GU The induced subgraph of G after removing U .
Cr(u)/Cr(U) The criticalness of a node u/a node set U .
fl(u,G) The node set representing the followers of u in G.

multiple nodes, which leverages the hidden local properties
of a complex graph. To summarize briefly, SCGCN takes
both the structural complexity and combinatorial complex-
ity into consideration and employs a graph convolution
model as well as a self-attentive mechanism for the problem
of critical user detection. We highlight our main contribu-
tions as follows.

• We propose a learning-based approach for finding
critical users to solve the collapsed k-core problem.
Different from the greedy algorithm discussed, our
model, SCGCN, leverages the hidden structure of
node combinations with respect to followers collaps-
ing, and performs inference on unseen combinations.

• To accelerate the model training, we explore the
properties of the critical users and reduce unpromis-
ing nodes, which are only deterministic to the graph
structure. Thereby, a large number of nodes can be
reduced from both the training and inference space
in advance, which does not affect the quality of the
solution to be found.

• We conduct extensive experiments on real-world
graphs. In our testing, SCGCN outperforms the ex-
isting approaches considerably. Our model is more
effective in denser communities (cores of larger k)
and has generalization ability on different b.

Organization: We give the problem statement in Section 2
and discuss the greedy algorithm in detail in Section 3. We
introduce our learning approach in Section 4 and report the
experimental studies in Section 5 followed by the related
works in Section 6. We conclude this work in Section 7.

2 PROBLEM STATEMENT

We model an undirected graph as G = (V,E), where
V (G) and E(G) represent the set of nodes and edges of G,
respectively. We denote the adjacent nodes of u in graph
G as nbr(u,G) = {v | (v, u) ∈ E(G)}, and denote the
number of adjacent nodes of u in G, as deg(u,G) such
that deg(u,G) = |nbr(u,G)|. To model the community
in a graph, we focus on k-core, which has been widely
used as a cohesive subgraph. The k-core of G is defined
as the maximal subgraph, denoted as Ck(G), such that
deg(u,Ck(G)) ≥ k for every node u ∈ V (Ck(G)), for a given
k.

In this paper, we study finding critical users in a social
network, where a critical user is a user in a community
whose leave will trigger his/her followers to leave. To
capture such followers in a community, we adopt the idea
used in [1], which studies the collapsed k-core problem.
In brief, a community is a k-core, Ck(G), for a certain k
value. Suppose a user (node), u, leaves (is deleted from) the

2

v3

v4

v5

v6 v9

v2

v1 v7 v10

v8

v11

v12

v13

v14

v15

Fig. 2. A 3-core graph G

v3

v4

v5

v6 v9

v2

v1 v7 v10

v8

v11

v12

v13

v14

v15

Fig. 3. The 3-cores as the results of the
greedy algorithm

v9

v7 v10

v8

v11

v12

v13

v14

v15

(a) A better solution

v9

v7 v10

v8

v13

(b) The optimal solution

Fig. 4. A better and the optimal solutions

Algorithm 1 Greedy Critical User [1]
Input: A Graph G, integers k and b;
Output: Critical users U ;

1: U ← ∅;
2: while |U | < b do
3: compute f(u, U,G) for every node u ∈ Ck(GU);
4: u∗ ← argmaxu f(u, U,G), U ← U ∪ {u∗};
5: end while
6: return U ;

community (Ck(G)), such an action will trigger other nodes
in Ck(G) to be deleted from Ck(G). Such other nodes are
considered as followers of u in G, denoted as fl(u,G). The
criticalness of a node u in Ck(G) is the number of nodes
(followers) that are deleted from Ck(G) if u is deleted from
Ck(G). Table 1 summarizes the frequently used notations in
this paper.

In [1], the collapsed k-core problem is to find a set of
nodes, U , instead of a single node u. Let GU denote the
graph G after deleting both the set of nodes U and the
edges that incident to any node in U , the collapsed k-core
is Ck(GU). Accordingly, the followers of the set of nodes, U ,
are fl(U,G) = Ck(G) \ (Ck(GU) ∪U), and the criticalness of
U is the number of followers of U (|fl(U,G)|). The problem
is to find a set of nodes, U , that maximizes |fl(U,G)|. In this
paper, we study the same problem. Due to the reason that
we will explore learning approaches with probability, we
define the criticalness of U including U and its followers,
such as Cr(U) = |fl(U,G) ∪ U |. This modification does not
affect the optimal answer of the collapsed k-core problem,
and does not affect the hardness of the collapsed k-core
problem [1]. We give the problem statement below.

Problem Statement [1]: Given a graph G, a value k for a k-
core, and the size of a set nodes b, the problem of critical user
detection is to find the set of nodes Umax = arg maxU Cr(U)
where |U | = b.

The set of nodes Umax, representing the optimal critical
users, is the set of nodes that have the largest criticalness,
Cr(U). Note that this problem is proved to be NP-hard for
any k > 3 in [1].

3 THE GREEDY ALGORITHM

Since the problem of critical user detection (collapsed k-
core) is NP-hard for any k > 3, a greedy algorithm is pro-
posed in [1]. The greedy algorithm is sketched in Algorithm
1. It takes three inputs, namely, the graph G, the value of k
for the k-core, and the size of nodes, b. Initially, U is set
to be empty. In a while loop (lines 2-5), it adds a node
u∗ into U in every iteration until |U | = b. Here, we use
a function f(u, U,G), to compute Cr(u) given the current

GU . The reason to use a function form is that we need a
function in our learning approach. The node u∗ selected is
the one with the max f(u, U,G) value among the nodes in
the current GU .

The greedy algorithm is designed to handle any graph G
and can get a good answer in practice. A question we want
to ask is whether we can do better than the greedy algorithm
for a certain given graph G by learning. Below, we discuss
it using an example and show that there are chances to do
better by learning.

Example 3.1: Consider a 3-core community G shown in
Fig. 1. Suppose we want to find top-2 critical users in G,
by giving k = 3 and b = 2. Initially, U = ∅. Hence, Cr(u)
for every node u in GU = G is computed and its value is
shown in the first row in Table 2. Here, v13 has the largest
criticalness 3 (Cr(v13) = 3) if v13 is deleted. We explain
it as follows. By deleting v13 from the 3-core, the degree
of v14, deg(v14, G), will change to 2, and will be deleted
from the 3-core. Similarly, v15 will be deleted when v14 is
deleted. Suppose G′ is the subgraph G by deleting nodes,
{v13, v14, v15}, and their incident edges from G. the new 3-
core, G′, is shown in Fig. 1 without the red nodes/edges.
In the 3-core G′, the largest Cr value among the nodes is
2, as shown in the second row in Table 2. Without loss of
generality, assume v6 is deleted. In this scenario, v1 will
be deleted as deg(v1, G

′) = 2 after deleting v6, as shown
in the blue nodes/edges in Fig. 1. As a result in total, the
greedy algorithm select, U1 = {v13, v6}, as top-2 critical
users whose deletion will delete 5 nodes in total including
U1 itself, such that Cr(U1) = 5.

Alternatively, suppose we pick v6 initially in the first
iteration, even though Cr(v2) = 2 which is smaller than
Cr(v13) = 3, and assume that we find U2 = {v6, v2}. The
criticalness of U2 is larger than that of U1, since Cr(U1) = 6.
The resulting collapsed 3-core by U2 is shown in Fig. 4(a).

The optimal top-2 critical users are UO = {v4, v11}, and
the collapsed 3-core is shown in Fig. 4(b). 2

There are some observations that can be made about the
greedy algorithm (Algorithm 1). First, in practice, the greedy
algorithm performs well. But, the function, f(u, U,G)
(which is Cr(u) in the greedy algorithm), is not submodular.
This indicates that there is no error bound guarantee for the
greedy algorithm. Second, the greedy algorithm designed
attempts to find the local optimal in every iteration, which
is impossible to find the global optimal top-b critical users
in a k-core community, because social networks can be
complex and the algorithm designed cannot explore all pos-
sible complexities in all different power-law graphs, given
the efficiency constraint. Third, the function f(u, U,G) is
non-injective. As a simple example, consider Example 3.1.

3

TABLE 2
The criticalness computed in iteration by Algorithm 1

V (G) v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Cr(v) in G 1 1 1 2 2 2 1 1 1 1 2 1 3 1 2
Cr(v) in G′ 1 1 1 2 2 2 1 1 1 1 1 1 - - -

Suppose it needs to find top-4 critical users for the 3-core
community. When it is about to select the top-2 critical user,
there are three candidates which have the same criticalness,
Cr(v4) = Cr(v5) = Cr(v6) = 2, as shown in the second row
in Table 2. The greedy algorithm will randomly pick up one
among the three candidates with the hope that it can get a
better answer for the top-4 critical users, which may result
in an answer being away from the optimal.

Given the issues discussed, in this paper, we attempt to
find a way to learn a function that can effectively capture
the graph property, and guide it to a better solution for the
critical users.

4 A NEW LEARNING-BASED APPROACH

In this section, we propose a learning-based approach in-
spired by the universal approximation theorem [5]. Our
main idea is to replace the function f(u, U,G) (= Cr(u))
in the greedy algorithm (Algorithm 1), by an expressive
parameterized function as f(u, S,G; Θ), which is learned
by a general neural network. Distinguished from f(u, U,G),
learning f(u, S,G; Θ) is supervised by the criticalness of
possible partial solutions, where a partial solution is a set
of nodes, S, with any size smaller than b (|S| < b). In other
words, the neural network exploits node sets, S, for any
size from 1 to b − 1, over the k-core to encode the critical-
ness of nodes in forming possible solutions. Intuitively, in
training, nodes with a higher criticalness tend to cluster in
the vector space, whereas nodes with a lower value are kept
away. Therefore, a set of high-quality critical users can be
identified by set expansion towards a direction with high
criticalness value in the vector space. In brief, f(u, S,G; Θ)
takes a vectorized representation of a partial solution S with
1 ∼ b − 1 nodes as input and predicts the likelihood of
inserting a node u to S. The f(u, S,G; Θ) being learned will
replace f(u, U,G) seamlessly in Algorithm 1 to generate
a solution. In the following, we discuss our approach in-
cluding (a) modeling the combinational criticalness among
nodes, (b) sampling on the graph G (or precisely Ck(G)) to
generate training data, and (c) designing the graph neural
network based model named SCGCN.

4.1 Combinatorial Criticalness Modeling
From the learning perspective, f(u, S,G; Θ) indicates how
probable a node u can be added into the current partial
solution S to maximize Cr(S ∪ {u}). In our problem, the
domain of partial solutions is a set of node sets, where a
node set, S, is a subset of V (Ck(G)), with the size, |S|, in
the range of [1, b − 1]. An evaluation function f is used
to estimate the likelihood, p(u|S), for a node, u 6∈ S, in
V (Ck(G)) to be selected as a critical user and added into S,
given the current critical user set, S. The likelihood p(u|S)
is defined below, for a partial solution S and a node u.

p(u|S) =
p(u, S)

p(S)
∝ p(S ∪ {u}) (1)

In Eq. (1), p(S ∪ {u}) is the marginal probability of the
extended solution, which is estimated by computing the
criticalness of the extended set Cr(S ∪ {u}) explicitly.

p(S ∪ {u}) =
Cr(S ∪ {u})

Σu∈V Cr(S ∪ {u})
(2)

Since the number of the possible combinations for S is ex-
ponential to |U |. It is impossible to memorize the results for
all the possible partial solutions. To this end, we employ a
parametric neural network f(u, S,G; Θ) = p̂Θ(u|S) to learn
a node representation with the preservation of the quality of
the partial solutions. To train f(u, S,G; Θ), batches of partial
solutions are fed into a neural network, where a partial
solution S is sampled by a partial solution sampler. The
corresponding soft-label is calculated by p(u|S) (Eq. (2)).
Hence, we use the cross entropy as the training loss, as given
in Eq. (3).

L(S) = Σu∈V − p(u|S) log(p̂Θ(u|S)) (3)

Given any partial solution S as input, the output of the
model, p̂Θ(u|S) ∈ R|V (Ck(G))| predicts the likelihood that
each node should be added into S. While in the testing
process, we replace f(u, U,G) with the trained f(u, S,G; Θ)
and generate the critical user set U w.r.t. Algorithm 1.

4.2 Reduced Classes Sampling

As mentioned in Section 4.1, we need a sampler to sample
partial solutions as the training data. It is crucial to design
an effective and efficient sampler to generate high-quality
samples (partial solutions). Before we discuss the sampling
method for the learning model to be used, we first prove
that the sampling space can be reduced significantly. That is
because a node v is impossible to be a critical user if it is the
follower of any node u but u is not the follower of v.

Theorem 4.1: Given a graph G and a budget b, assume Umax =
arg maxU Cr(U). For the nodes u, v ∈ G, if v ∈ fl(u,G) and
u /∈ fl(v,G), then v /∈ Umax if Cr(Umax) < |V (G)|. 2

Proof Sketch: Proof by contradiction. For any node pair
v, u ∈ V (G) s.t. v ∈ fl(u,G) and u /∈ fl(v,G), consider
two cases (1) u /∈ Umax and (2) u ∈ Umax.

• Case 1: u /∈ Umax. Assume Theorem 4.1 is incorrect
such that v ∈ Umax and Cr(Umax) < |V (G)|. As
v ∈ fl(u,G), v will be deleted if u is deleted from the
graph G, due to the degree constraint. Then, is has
fl(u,G) = fl({u, v}, G). Also, since u /∈ fl(v,G), we
can derive that |fl(v,G)| < |fl({u, v}, G)|. Thereby,
|fl(v,G)| < |fl(u,G)|. In this scenario, consider the
node u that u /∈ Umax, we can get a new set of nodes,
U ′ = Umax \ {v} ∪ {u}, by replacing the node v in
Umax with the node u. This will lead to fl(U ′, G) >
fl(Umax, G), which contradicts the assumption that
Umax = arg maxU Cr(U).

4

𝐸 ∈ ℝ𝑟×𝑚

Embedding

Matrix

+ Softmax𝐻 ∈ ℝ𝑛×𝑚

𝐴𝑡𝑡 ∈ ℝ
𝑟×𝑛

Self Attention

𝐻 ∈ ℝ𝑛×𝑚

𝑝 ∈ ℝ𝑐

Flatten MLP

Graph Convolution

Sampling

Node Reducing

𝑒 ∈ ℝ 𝑟∗𝑚 ×1

Fig. 5. The overview of SCGCN: The k-core structure and sampled node sets are fed into a two-layer GCN, followed by a self-attention layer. A
fixed-length graph representation E is generated and flatten to a vector, passing through an MLP to approximate function f . It is a special application
of DeepSets [6], where GCN generates element-wise embedding, self-attention performs a weighted sum pooling and MLP implements the set-level
approximation.

• Case 2: u ∈ Umax. Assume Theorem 4.1 is incorrect
such that v ∈ Umax and Cr(Umax) < |V (G)|. Since
Cr(Umax) < |V (G)|, at least one node w exists in
Ck(GUmax

) which is the k-core of the remaining
graph. Consider the node set U ′′ = Umax\{v}∪{w}.
As v ∈ fl(u,G), it can be derived that fl(Umax, G) =
fl(Umax \ {v}, G). Thus adding the node w into
Umax \ {v} will increase at least one Cr(U ′′), as w
itself will be deleted. It contradicts the assumption of
Umax = arg maxU Cr(U).

Thus, it has v /∈ Umax if v ∈ fl(u,G) and u /∈ fl(v,G). 2

According to Theorem 4.1, if v ∈ fl(u,G) and u /∈
fl(v,G), there are two possible cases regarding a partial
solution S. One case is when v ∈ S but u /∈ S. Here, we can
replace v by u without the degradation of criticalness. The
other is when v ∈ S and u ∈ S. Then, we can safely delete v
from S without the degradation of criticalness, which leaves
more possibility for other nodes to be added into S.

Here, we use re(G) to denote all the nodes, v, in G such
that v ∈ fl(u,G) for a certain node u and u /∈ fl(v,G). To
detect critical users is then reduced to finding a node set
U ⊂ V \ re(G), where Cr(U) is maximized and |U | = b. This
re(G) contains the nodes that cannot be critical users, and
therefore it is not necessarily to sample nodes from re(G).

Example 4.1: Consider the graph G shown in Fig. 1
for a given k = 3. We have fl(v13, G) = {v14, v15},
fl(v15, G) = {v14}, fl(v4, G) = fl(v5, G) = fl(v6, G) = {v1},
and fl(v14, G) = fl(v1, G) = ∅ by imposing the degree
constraint. Since v14 ∈ fl(v13, G) and v13 /∈ fl(v14, G), we
have v14 ∈ re(G). Similarly, since v15 ∈ fl(v13, G) and
v13 /∈ fl(v15, G), we have v15 ∈ re(G). Also, we have
v1 ∈ re(G) because of v1 ∈ fl(v4, G)(fl(v5, G), fl(v6, G))
and v4(v5, v6) /∈ fl(v1, G), Therefore, we have re(G) =
{v1, v14, v15}, which are the nodes can be safely reduced,
since they cannot be critical users. 2

In our sampling, instead of uniformly sampling partial
solutions, S, from the whole node set V (G), we only sample
S from V (G) \ re(G). Each candidate u ∈ V (G) \ re(G)
is sampled with a sampling probability prob(u), i.e., the
normalized criticalness of u (Eq. (4)):

prob(u) =
Cr(u)

Σv∈V \re(G)Cr(v)
(4)

The biased sampling motivates the neural network model to
learn well on nodes of high criticalness. There are alternative
biased sampling and fine-tuning approaches, which are

beyond the scope of this paper. The significance of reducing
nodes re(G) is two folds. First, it reduces the sampling space
in the training process, which improves the effectiveness
and efficiency of training. Second, it also prunes re(G) from
the solution space since the neural network only needs to
inference the probability p(u) for u ∈ V \ re(G) in Eq. (2).

To this end, the learned function f(u, S,G; Θ) improves
the greedy algorithm by leveraging the critical combinations
of node sets, which are sampled from the graph based on
the node criticalness. In other words, we use observed sets
to fit the function of joint criticalness for any node sets.
The biased sampling and sample space reduction enable the
observation to concentrate on high potential critical users.
To implement f(u, S,G; Θ), below we introduce a graph
neural network model, which finally handles combinato-
rial complexity and structural complexity in an end-to-end
framework.

4.3 The Proposed Learning Framework: SCGCN

To learn f(u, S,G; Θ) by samples of node sets on k-core,
we adopt a deep neural network architecture DeepSets [6],
which operates on sets and captures the structure of per-
mutation invariant functions. For a set S, each element in
S is transformed into an element-wise representation. Then,
all the element-wise representations are summed up by a
pooling function, e.g., classic aggregation sum, generating a
set-level representation. Finally, the add-up representation
is processed by other neural networks. There are two main
challenges when applying this architecture to our problem:

• Leveraging the graph topology as much as possible
to perform element-wise embedding on the graph.

• Designing a flexible pooling function that encodes
the importance of different nodes simultaneously.

In the literature, graph representation learning has re-
cently shifted from hand-crafted kernel method [7] to un-
supervised proximity preserving [8], [9] and graph neural
networks approaches [10], [11]. In this vein, we propose
a new model called SCGCN. In SCGCN, we adopt the
GCN for node embedding, generating the element-wise
representation for node appearance/absence in the sampled
set. For the pooling function, we use a self-attention mecha-
nism [12], [13] to aggregate the node embedding to a fixed-
length graph representation as the set-level representation,
which also encodes the importance of different nodes to
the graph representation. The overall architecture of our
learning model is shown in Fig. 5.

5

Given the adjacency matrix A ∈ Rn×n of a k-core
with n nodes. A pre-processing step firstly computes the
normalized adjacency matrix Â as shown in Eq. (5), where
In is the n × n identity matrix and D = diag(d) for
d(i) = Σi(A+ In)ij .

Â = D−
1
2 (A+ In)D−

1
2 (5)

The formula in Eq. (6) defines the two-layer GCN [11]. The
matrix Wi is the weights of the i-th layer, where W0 ∈ Rφ×ρ
and W1 ∈ Rρ×m, respectively.

H = Â ReLU(ÂXW0)W1 (6)

As indicated in [14], a graph convolution layer can be
regarded as a special Laplacian smoothing on the node
feature for generating new features. Taking the first layer
as an example, intuitively, each node aggregates the feature
X ∈ Rn×φ passed from its neighborhoods. Then, the ag-
gregated feature passes a linear transformer with parameter
W0, and activated by an element-wise rectified linear unit
ReLU, thereby generating a new feature of ρ-dim for each
node.

As shown in Fig. 5, we first utilize the two-layer graph
convolution to smooth the node features over the graph
topology. Then the generated node representations are
added up by a self-attentive mechanism [12]. LetH ∈ Rn×m
be the node representation generated by the two-layer GCN.
The self-attentive mechanism takes the whole node repre-
sentation as input, and output the annotation matrix Att as
the attention weights (Eq. (7)).

Att = softmax(Ws2tanh(Ws1H
T)) (7)

Here, Ws1 ∈ Rd×m and Ws2 ∈ Rr×d are two weight matri-
ces. The weight Ws1 transforms the node representation lin-
early from m-dim space to d-dim space, which is activated
by the non-linear tanh. Subsequently, the weight Ws2 learns
the importance of each node on the k-core, in r aspects. It
serves as there are r experts rating the importance of nodes
in independent perspectives. Then, the softmax function is
applied along the second dimension of its input to ensure
the computed attention weights of each expert sum up to
1. This structured attention (Eq. (7)) can be regarded as a
two-layer multilayer perceptrons (MLP) without bias. The
MPL has d hidden units and the weights of the two layers
are Ws1 and Ws2, respectively.

By multiplying the annotation matrix Att with the node
representation H as Eq. (8), a final graph representation
E ∈ Rr×m is computed. Eq. (8) acts as a pooling layer,
which sums up the embedding of each node weighted by
the attention learned in Eq. (7). It is worth noting that E is
a fixed-length representation controlled only by the hyper-
parameters r and m.

E = AttH (8)

For a sampled node set S, we assign the input node feature
H0 as the identity vector representation of S, i.e., H0(i) = 1
if the i-th node is in S, otherwise H0(i) = 0. Auxiliary node
features like degree, the core number of each node can be
concatenated to H0. Processed by the two-layer GCN and
the attention layer, we obtain a set-level embedding matrix
E ∈ Rr×m. After flatting E to a vector e, we feed e to an

TABLE 3
Datasets

Graphs |V| |E| Description
Facebook [15] 4,039 88,234 social net
Brightkite [16] 58,228 214,078 friendship net
WormNet [17] 16,347 762,822 gene net
DBLP [15] 317,080 1,049,866 co-authorship net
Wiki-Talk [16] 519,403 1,604,100 communication net
Google+ [15] 107,614 13,673,453 social net

MLP with sigmoid activation to estimate the probabilities
f(u, S,G; Θ) for the given node u:

f(u, S,G; Θ) = p̂Θ(u|S) = MLP(e)[u], (9)

where the output of the MLP is a c-dim vector, i.e., the
estimation of Eq. (2), where c = |V \ re(G)|.

In the training phase, given a vectorized sampled partial
solution, f(u, S,G; Θ) is trained by the loss in Eq. (3).
While in the prediction phase, we replace f(u, U,G) with
the trained f(u, S,G; Θ) and generate the critical user set
U w.r.t. Algorithm 1. We analyze the time complexity of
SCGCN. For training, the time complexity is O(sbs(l|E| +
rm2d|V |+rmhc)). Here, s and bs are the number of training
steps and the mini-batch size, respectively, and sbs is the
number of used samples in total. For each sample, the com-
plexity consists of three parts, the graph convolution lay-
ers (l|E|), the self-attention layers (rm2d|V |) and the MLP
(rmhc). Here, l is the number of convolutional layers, |V |
and |E| are the number of nodes and edges. m is the output
embedding dimension of graph convolutions and r, d are
the hyper-parameters of the self-attention. rm, as the size of
the output of self-attention, is the input size of a two-layer
MLP with h hidden units and c predicted classes. Therefore,
the final training complexity is O(sbs(l|E| + rm2d|V |)) for
short and the testing complexity is O(b(l|E|+ rm2d|V |)).

5 EXPERIMENTAL STUDY

In this section, we present our experimental studies. First,
we give the setting of the testing, including the datasets,
the models and training configurations, and the baseline
algorithms. Then, we conduct experiments to investigate
the following facets: (1) Compare the proposed model with
the existing baseline algorithms on real graphs (Section 5.2).
(2) Analyze the effectiveness of SCGCN on varying k (Sec-
tion 5.3). (3) Investigate the generalization capability of
models trained by different node set sizes (Section 5.4).
(4) Conduct a case study on the DBLP co-author network
(Section 5.5). (5) Compare the running time of SCGCN with
the baseline algorithms (Section 5.6).

5.1 Experiment Setup

Datasets: We use six real graphs collected from Stan-
ford SNAP [15], KONECT [16] and Network Data Repos-
itory [17]: Facebook is the Facebook friendship network.
Brightkite is a location-based social network, where a pair
of nodes, i.e., users, has an edge if there is a friendship.
WormNet is the gene network where the nodes denote genes,
and edges denote gene functional associations. DBLP is the
co-authorship network of research papers in the field of
computer science. Wiki-Talk is the communication network

6

TABLE 4
The hyper-parameter configuration

hyper-parameters Values
learning rate 10−3 ∼ 10−4

mini-batch size 16 ∼ 128
training steps 50 ∼ 5× 103

weight decay (L2 penalty) 10−3 ∼ 10−5

dropout probability 0.1 ∼ 0.9
GCN hidden units m {64, 128, 256, 512}
attention layer hidden units r, d {32, 64, 128, 256}
MLP hidden units {64, 128, 256, 512}

of Wikipedia where nodes represent users, and an edge
represents a message sent between two users. Google+ is
the Google+ social network. Table 3 summarizes the infor-
mation of these real graphs. We extract multiple k-cores of
the graphs in Table 3, where k is starting from around half of
the maximum core number of the graph, respectively. These
cores have 300 ∼ 3000 nodes. In general, we aim to find
around 0.5% ∼ 2% of the nodes in the k-core as the critical
users U .

Implementation and Setting: The learning framework is
built on PyTorch [18] with Python 3, while the node sets
sampling is implemented by parallelized C++ binding [19].
For sampling one set, we first sample a set size in the
range of [1, b − 1] uniformly, then we sample nodes of this
size by the probability prob in Eq. (4). We use Adam [20]
optimizer with a learning rate decay to train our model.
Table 4 shows the hyper-parameters configuration in the
training. The models are learned with these parameters
tuned in the corresponding experienced range. Here, we
use a two-layer MLP to encode the set-level representation
and generate the final output. The hidden layer is activated
by ReLU and the output layer uses the softmax to predict
the probabilistic distribution (Eq. (2)). Both training and
prediction are performed on a single Tesla P40.

Baseline Approaches: We compare our model SCGCN with
the following approaches: (1) Greedy: the greedy algorithm
proposed in [1] (Algorithm 1). This algorithm greedily se-
lects b nodes, where in each iteration, it selects one node
with the maximum criticalness, regarding the current graph.
The time complexity of this algorithm is O(bnm), where
m is the cost of computing the criticalness for one node.
(2) Degree: the baseline method in [1]. In each iteration,
it greedily removes a node with the maximum degree
and adds it to the solution. Meanwhile, the degree of the
influenced nodes is updated. (3) PageRank: An algorithm
that selects b nodes greedily. In each iteration, it selects a
node with the maximum PageRank score [21], removing it
and its followers. And the PageRank value is recomputed
for the current k-core. The PageRank is computed by power
iteration with the dumping factor of 0.85. (4) Eigencentral-
ity: Similar to PageRank, instead we use the eigenvector
centrality [22] to measure the importance of the node. The
eigenvector centrality is computed by power iteration and
the edge weights are assigned uniformly. All the approaches
above as well as SCGCN are greedy strategies (Algorithm 1)
with different heuristics f(u, U,G), i.e., criticalness, degree,
PageRank, eigenvector centrality, f(u, S,G; Θ). In one iter-
ation, if multiple node candidates have the same f(u, U,G)

value, we break the tie by choosing the one with minimum
node id.

5.2 Effectiveness on Real Graphs
First and foremost, we test the effectiveness of our approach
on various k-cores, which is the ability to drag away follow-
ers as the selected critical users are removed.

Overall Results and Analysis. Fig. 6 shows the overall
results over various k-core of the six real graphs. These
figures show the growth of removed followers as the se-
lected critical users are removed gradually. In general, our
approach SCGCN can outperform its competitors in most
cases. Regarding the trend of community collapsion with
the leave of critical users, from a macro perspective, the col-
lapsion process behaves as stable collapsing with jumping
points. The stable collapsing derives from the local quantita-
tive removing of one critical user, while the jumping points
derive from the accumulative effect of previous collapsing,
which bring qualitative influence on the communities. The
complexity of graph topology, as well as the potential jump-
ing points, makes the problem more complicated in specific
cases. Greedy performs well if the number of removals is
always linear to the budget size b. However, due to the
existence of these nodes that change the structure of the
community qualitatively, the existing approaches cannot de-
tect the jumping points as early as possible, and miss some
critical users. Under this circumstance, our learning-based
approach SCGCN can find the jumping points effectively to
collapse more followers than the existing solutions.

As a closer observation, we further elaborate on the
results shown in Facebook. In Fig. 6(b), SCGCN finds a
jumping point at b = 4, slightly earlier than Greedy. In
the following, at b = 10, it finds another jumping point,
leading to a 43% improvement of Greedy. Finally, at b = 20,
it achieves a 55% improvement of Greedy. For the 40-core
of Facebook (Fig. 6(c)), SCGCN finds a jumping point much
earlier than Greedy, finally outperforms Greedy 300%. For
the 50-core of Facebook (Fig. 6(d)), SCGCN finds a small
jumping point at b = 16, further improving the number of
collapsed followers by 48% for Greedy.

Another interesting observation is that SCGCN can col-
lapse the whole community with fewer selected critical
users. For example, in the 50-core of Brightkite (Fig. 6(h)),
the whole community is collapsed by 3 critical users in
Degree, PageRank, Eigencentrality and our SCGCN, while
Greedy generates a solution of 5 nodes for this complete
collapse. And similar phenomenons are also shown in
WormNet (Fig. 6(l)) and Wiki-Talk (Fig. 6(t)). In most cases,
SCGCN successfully finds the jumping points earlier than
other methods. Furthermore, we observe that before finding
the jumping points, SCGCN always selects an alternative
candidate to remove, which could has slightly fewer local
quantitative removing followers. But this selection leads to
the better final results, such as Fig. 6(b), Fig. 6(k), Fig. 6(o)
and Fig. 6(w). It indicates that SCGCN successfully captures
the long-term accumulative qualitative collapsing and over-
comes the short-term deficiency. It is the main reason that
SCGCN can outperform its competitors.

In addition, Fig. 6 suggests that PageRank and Eigen-
centrality perform similarly to Degree in most cases. In fact,

7

100

200

300

5 10 15 20

R
em

ov
e

b

Greedy SCGCN Degree PageRank Eigencentrality

100

200

300

5 10 15 20

R
e
m

o
v
e

b

(a) Facebook k = 20

50

100

150

200

5 10 15 20

R
e
m

o
v
e

b

(b) Facebook k = 30

30

60

90

120

5 10 15 20

R
e
m

o
v
e

b

(c) Facebook k = 40

10

20

40

60

5 10 15 20

R
e
m

o
v
e

b

(d) Facebook k = 50

100

200

300

400

5 10 15 20

R
e
m

o
v
e

b

(e) Brightkite k = 20

50

100

150

5 10 15 20

R
e
m

o
v
e

b

(f) Brightkite k = 30

30

60

90

120

5 10 15 20

R
e
m

o
v
e

b

(g) Brightkite k = 40

60

120

180

1 2 3 4 5

R
e
m

o
v
e

b

(h) Brightkite k = 50

25

50

75

100

5 10 15 20

R
e
m

o
v
e

b

(i) WormNet k = 130

50

100

150

200

5 10 15 20

R
e
m

o
v
e

b

(j) WormNet k = 140

50

100

150

200

250

5 10 15 20

R
e
m

o
v
e

b

(k) WormNet k = 150

200

400

600

800

5 10 15

R
e
m

o
v
e

b

(l) WormNet k = 160

100

200

300

400

5 10 15 20

R
e
m

o
v
e

b

(m) DBLP k = 20

100

200

300

5 10 15 20

R
e
m

o
v
e

b

(n) DBLP k = 30

50

100

150

5 10 15 20

R
e
m

o
v
e

b

(o) DBLP k = 40

25

50

75

100

5 10 15 20

R
e
m

o
v
e

b

(p) DBLP k = 50

50

100

150

200

5 10 15 20

R
e
m

o
v
e

b

(q) Wiki-Talk k = 110

40

80

120

160

5 10 15 20

R
e
m

o
v
e

b

(r) Wiki-Talk k = 120

50

100

150

200

5 10 15 20

R
e
m

o
v
e

b

(s) Wiki-Talk k = 130

200

400

600

5 10 15

R
e
m

o
v
e

b

(t) Wiki-Talk k = 140

30

60

90

120

5 10 15 20

R
e
m

o
v
e

b

(u) Google+ k = 90

30

60

90

120

5 10 15 20

R
e
m

o
v
e

b

(v) Google+ k = 100

150

300

450

600

5 10 15 20

R
e
m

o
v
e

b

(w) Google+ k = 110

100

200

300

400

500

5 10 15 20

R
e
m

o
v
e

b

(x) Google+ k = 120

Fig. 6. Varying k

all of the three measurements evaluate node importance
based on its neighborhood. The difference is that degree
centrality counts the 1-hop neighbor while the PageRank

and eigenvector centrality count the walks of infinite length.
Compared with eigenvector centrality, PageRank imposes
weights on the node neighborhood, i.e., the transition

8

1

10

100

1 2 3 4

R
e
m

o
v
e

b

Optimal Greedy SCGCN

(a) Facebook k = 30

1

10

100

500

20 30 40 50

R
e
m

o
v
e

k

Optimal Greedy SCGCN

(b) Brightkite b = 2

Fig. 7. Compare With the Optimal Solution

TABLE 5
The Statistics of SCGCN and Greedy Results on Facebook

Approach k = 20 k = 30 k = 40 k = 50
mean var mean var mean var mean var

SCGCN 0.37 0.03 0.53 0.03 0.61 0.01 0.58 0.01
Greedy 0.44 0.04 0.58 0.04 0.73 0.02 0.75 0.02

probabilities. Those make PageRank achieve more robust
performance than Degree and Eigencentrality under most
circumstances, especially for Fig. 6(b), Fig. 6(d), Fig. 6(n)
and Fig. 6(j). The performance of the three baselines, as
well as Greedy and SCGCN are comparable in some cases,
e.g., Fig. 6(q), Fig. 6(r) and Fig. 6(v), in which we spec-
ulate these communities have relatively simple intrinsic
structures, leading to a linear node collapsion regarding b.
Thereby, these approaches may be able to find near-optimal
solutions.

Empirical Gap to Optimal Solution. To further investigate
the effectiveness of SCGCN, Fig. 7 compares the results of
SCGCN, Greedy with the optimal solution on two relatively
small networks by varying b on Facebook (Fig. 7(a)) and
varying k on Brightkite (Fig. 7(b)). The optimal solutions
are achieved by exhaustively search for all the combinations,
where the time complexity is O(nbm). Here, m denotes the
cost of computing the criticalness of a node set with b nodes
and in the worst case, m = O(|E|). Our C++ implementa-
tion of this exhaustive search takes 180 seconds for b = 3
and 69,000 seconds for b = 4 on the Facebook 30-core,
respectively. When b = 1, the solutions of Greedy are exactly
optimal, and SCGCN can also find the optimal solution
for all the test cases (Fig. 6). As b increases, the removal
gap between optimal and Greedy tends to become larger,
which brings improvement space for SCGCN. As Fig. 7(a)
shows, SCGCN achieves a near-optimal removal at b = 4
via an early found jumping point. Before this improvement,
SCGCN tends to selects an alternative or even slightly worse
solution than Greedy, as b = 3 in Fig. 7(a). That is a main
reason that usually, SCGCN cannot outperform Greedy in
selecting the first few critical uses. Note the potential func-
tion f(u, U,G) of Greedy is proved to be non-submodular,
which means the performance gap between Greedy and the
optimum is already hard to analyze.

5.3 Variation on k
From Fig. 6, we can observe that for different cores, the
pattern of the collapsing process is very different, even for
the same graph. For cores of smaller k, there are no obvi-
ous jumping points in the collapsing process, as Fig. 6(a),
Fig 6(m), Fig 6(e) and Fig. 6(u) shown. Here, the number of

collapsed followers is growing stably as b increases, with
considerable speed. In contrast, for cores of larger k, for
instance, Fig. 6(b), Fig. 6(n), Fig. 6(g) and Fig. 6(w), collaps-
ing is mainly caused by remarkable jumping points instead
of local removing of one critical user. This phenomenon is
consistent with our intuition, i.e., the denser the core, the
harder to collapse it. In other words, it is more difficult for a
single removal to break the structure of a dense k-core since
it tends to form a stable structure, e.g., clique. To validate
this intuition, we present the local clustering coefficient [23]
distribution of Facebook cores in Fig. 8. The local clustering
coefficient (CC), as defined in Eq. (10), computes the rate of
the number of closed triangles to the number of triplets that
a node forms, which quantifies how close its neighbors tend
to form a clique.

CC(u) =
2|(v, k) : (v, k) ∈ E(G), v, k ∈ nbr(u,G)|

deg(u,G)(deg(u,G)− 1)
(10)

In Fig. 8, we divide the domain of CC, [0, 1], to 50 seg-
mentations and count the frequency of nodes falling in the
segmentations. We can observe that from sparser to denser
core, the histogram shifts from smaller CC to larger CC.

Moreover, we mark the CC of the critical users selected
by our model SCGCN and Greedy in Fig. 8, respectively.
Meanwhile, the mean (mean) and variance (var) of the
CC are given in Table 5. It is worth mentioning that the
solution of SCGCN has an overall smaller CC than that of
Greedy on Facebook 30, 40, and 50 cores. Recall that smaller
CC indicates the neighbors of the node have a weak ability
to cluster together, so that removing the node would cause
violation of the k-core to a greater extent.

5.4 Variation on Training Set Size
In this section, we investigate the generalization capabil-
ity of models trained by node sets of different sizes. The
larger node sets are sampled, the larger combinations the
model is to learn. As the size of node set is uniformly
sampled between [1, b−1], we train 5 models by setting b to
{5, 10, 15, 20, 25}, respectively and generating the solutions
of 25 critical users. Except for the sampled node set size,
the 5 models for one community are trained by the same
hyper-parameters.

Fig. 9 shows the result of the 5 models on two commu-
nities, the 30-core of DBLP (Fig. 9(a)) and the 110-core of
Google+ (Fig. 9(b)). According to Fig 9, it is encouraging to
find that SCGCN has the generalization ability as b varies
during training. In other words, the model trained by a
give b can be reused to generate good solutions for larger
b in the prediction phase. It implies that SCGCN learns
the information from small node combinations and gener-
alizes it to larger combinations. This generalization ability
alleviates the combination complexity of the problem thus
SCGCN can outperform Greedy for a larger budget b in
prediction, even if the training budget is small. On the
other hand, training by larger node sets is favorable to
further improve the generalization ability, especially for
solving a larger set of critical users. As shown in Fig 9(a),
SCGCN (b = 25) achieves the best performance after b = 13
in prediction. For example, to remove 25 critical users,
SCGCN (b = 25) collapses 356 users in total, while other
models collapse 325 or 326 users.

9

 0

 10

 20

 30

 40

 50

 60

 70

0 0.25 0.5 0.75 1

Local Clustering Coefficient

SCGCN
Greedy

(a) k = 20

 0

 10

 20

 30

 40

 50

 60

0 0.25 0.5 0.75 1

Local Clustering Coefficient

SCGCN
Greedy

(b) k = 30

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 0.25 0.5 0.75 1

Local Clustering Coefficient

SCGCN
Greedy

(c) k = 40

 0

 5

 10

 15

 20

 25

 30

 35

0 0.25 0.5 0.75 1

Local Clustering Coefficient

SCGCN
Greedy

(d) k = 50

Fig. 8. Facebook Local Clustering Coefficient Distribution

100

200

300

5 10 15 20 25

R
em

ov
e

b

Greedy
SCGCN (b=5)

SCGCN (b=10)
SCGCN (b=15)

SCGCN (b=20)
SCGCN (b=25)

100

200

300

5 10 15 20 25

R
e
m

o
v
e

b

(a) DBLP k = 30

200

400

600

800

5 10 15 20 25

R
e

m
o

v
e

b

(b) Google+ k = 110

Fig. 9. Varying Training Set Size

Another interesting observation is that in Fig. 9(b), both
SCGCN (b = 25) and SCGCN (b = 20) detect a jumping
point as the 25-th critical user, improving the number of
collapsed users by about 44% compared with other models
and Greedy. We conjecture that SCGCN (b = 20) can detect
the final jumping point due to the simple inherent structure
in Google+.

5.5 A Case Study on DBLP

To demonstrate the effectiveness of SCGCN in social net-
work analysis, we conduct a case study on the co-author
network extracted from DBLP. In the co-author network,
each node represents a researcher and the edge between
them indicates that they have collaborated in more than
5 papers. Figure 10 depicts the followers of the critical
users in the Greedy and our SCGCN approach. For a clear
presentation, we just show one connected component of
the whole network, and there are 119 researchers in the
community.

When b is set as 1, both Greedy and SCGCN approach
return “Richard Durbin”, from the University of Cambridge.
He has published many works in the area of bioinformatics
and human genetics. The total number of citations is more
than 170,000, and he has 20 followers. Notice that when b
is 1, both Greedy and SCGCN find the optimal solution, as
“Richard Durbin” has the most followers compared with all
the other nodes.

Also, we set b as 5 and explore the critical users again.
In this scenario, Greedy returns 5 nodes with a total of 29
followers, which covers 24.37% of the whole network. On
the other hand, our SCGCN approach finds 5 nodes with
50 followers, and it covers nearly half of the whole commu-
nity, with 72.41% more followers, compared with Greedy.
The reason for the improvement is that, for Greedy, after
detecting “Richard Durbin”, the number of followers for
each node in one iteration does not vary significantly. Thus
the greedy algorithm selects the critical user from the node
set with the same number of followers, and it cannot find

Richard Durbin

Tim Cutts
James A. Smith

Xos Ewan Birney

(a) Greedy

Richard Durbin
Arek Kasprzyk

Martin Hammond

Jorge Monforte-Garcia
Sergio Perez Gaviro

(b) SCGCN

Fig. 10. The visualization of Greedy and SCGCN for DBLP dataset with
k = 20 and b = 5. The yellow indicates the selected critical users U .
The red and the green indicate corresponding removed followers and
the remaining nodes, respectively.

the influence with multiple nodes as a combination. In our
SCGCN approach, as we sample more node combinations,
the results are significantly better than Greedy, and the crit-
ical users include “Richard Durbin”,“Arek Kasprzyk”, etc.
The critical users we found are representatives in the cor-
responding areas, and their papers have more than 212,911
citations. This result validates the potential of SCGCN in
real-world applications.

5.6 Efficiency of Training and Prediction

Finally, we investigate the running time of the training
and prediction of SCGCN, comparing with the 4 baseline
algorithms. An SCGCN uses python NetworkX [24] to
perform core collapsing in the prediction phase while we
implement the 4 baseline algorithms by NetworkX. Fig. 11
shows the running time of SCGCN in training (SCGCN
(T)) and prediction (SCGCN (P)), and that of the baselines,
where the time of loading the graph and computing the
initial k-core is excluded. For the training, the batch size is
set to 32 and the number of steps is 2000, where we find
SCGCN has already achieved its best performance over the
graphs in Table 3. Due to the parallelized C++ binding for
training data sampling and the GPU acceleration for model
training, training can be finished in 200 seconds for the cores
of Google+ and Wiki-Talk. In Fig. 11, the running time
of the 4 baselines as well as the prediction of SCGCN are
of the same magnitude, where Degree is the cheapest and
Eigencentrality is the most expensive approach. With the
acceptable training cost and the competitive prediction time,
SCGCN is a promising option to find high-quality solutions
when sufficient computation resources are available.

Moreover, an interesting result is that training by sam-
pling on smaller budget size is not faster than that of larger
budget size, as shown in Fig. 11(b). Consider the time com-
plexity of sampling one partial solution S and computing
the label (Eq. (2)), which is O(|S|m0 + nm1), where m0

and m1 are two coefficients denoting the cost of computing

10

1

10

100

500

90 100 110 120

T
im

e(
s)

k

SCGCN(T)
SCGCN(P)

Greedy
Degree

PageRank
Eigencentrality

1

10

100

500

90 100 110 120

T
im

e
(s

)

k

(a) Google+ b = 20

1

10

100

500

5 10 15 20

T
im

e
(s

)

b

(b) Wiki-Talk k = 120

Fig. 11. Comparison on Running Time

the criticalness for one node on the original k-core Ck(G)
and the partially collapsed k-core Ck(GS), respectively. For
one thing, as n � |S|, the term O(nm1) will dominate the
complexity. For the other, the relationship between m0 and
m1 is nondeterministic regarding different budget sizes |S|.
Therefore, the training time for smaller b is not shorter but
could be even longer than that for larger b.

6 RELATED WORKS

Critical Entity Exploration in Dense Subgraph: For the
related works, [1] proposes the greedy algorithm to find
critical users in social networks. The criticalness is based
on the number of nodes removed according to the degree
constraints. [2] proposes the measurement of the core struc-
ture based on the removal of edges, and [4] investigates
the minimization of k-core with edge manipulation. [25]
proposes a game theory based approach to find the critical
edges. These works aim to find the critical structure of
a dense subgraph via removing edges, but cannot apply
to find the critical entities directly. [26] investigates the
parameterized complexity for the collapsed k-core problem
for different k and b values. It also proposes two algorithms
for k = 1 and k = 2, respectively, but leaves the theory and
algorithms for general cases as open problems.

For the dense subgraph, k-core is introduced in [27]
and has been used in network analysis [28], event detection
[29], keyword extraction [30], etc. These studies use the core
structure to model the dense subgraph in the corresponding
networks. Another variance based on k-core is anchored k-
core problem [31]. The problem is to find b vertices, such
that there exists k-core if these b vertices are not removed.
This is different from the criticalness in our problem, as we
aim to find the vertices with the most followers.

Neural Networks for Combinatorial Optimization: Re-
cently, neural networks have been adopted to solve the
combinatorial optimization problem. To solve the travel
salesman problem (TSP), [32] uses reinforcement learning
(RL) to train a Pointer Network [33] by learning from a set
of problem instances and solutions. In addition, Dai et. al.
[34] propose a framework to learn a greedy algorithm over
graphs, in solving minimum vertex cover (MVC), maximum
cut and TSP. This approach learns a graph representation
and an evaluation function as a greedy heuristic, which is
trained by deep Q-learning [35] jointly. [36] builds a GCN
based classifier with a collection of graphs and solutions to
solve MVC, maximal independent set and maximal clique.
To reduct the search space of combinatorial optimization

algorithms, [37] trains a binary classifier to predict the prob-
ability that a node is in the maximum clique, by leveraging
node-level features. However, these approaches cannot be
directly applied to solve our problem, detecting critical
entities over a single large real-world graph. They focus on
building a general model by learning from a distribution of
graphs and corresponding solutions in an inductive way. In
contrast, our model, SCGCN learns over a target domain,
i.e., a given graph, via graph representation learning.

For machine learning-based solutions, the first and fore-
most step is graph representation learning. A recent survey
introduces extensive studies [38], [39], including early low-
rank matrix decomposition approaches [40], encoding the
neighborhood relationship by truncated random walks [8],
[9], and preserving high-order proximity and macroscopic
structures [41], [42]. Graph convolutional networks (GCN)
defines convolution filters on graph Laplacian [10], which
has desirable properties as local translational invariance,
permutation invariance and size independence. [11] pro-
poses a localized first-order approximation of spectral graph
convolution. [43] reviews a large pool of emerging GCN
variations.

While we rely on existing deep learning paradigms, our
main differences are: (1) we use GCN and attention mecha-
nism to model the combination structures among potential
critical entities, in solving the NP-hard problem. (2) we
consider both the graph representation from the learning
procedure, as well as the deterministic algorithm procedure
to explore critical entities.

7 CONCLUSIONS

In this paper, we focus on detecting critical entities in social
network communities, in a novel, machine learning-based
perspective. As it is an NP-hard problem, we first analyze
the deficiency of the existing greedy algorithm in depth.
Distinguished from the pre-defined heuristics, we design
a new model: SCGCN to learn the underlying combina-
torial criticalness over nodes sets, which are possible par-
tial solutions generated by sampling on the communities.
Furthermore, considering the graph structure, we use a
deterministic pruning strategy to reduce the sampling space
as well as the model inference space. Compare with the
greedy algorithm, our learning-based approach improves
the quality of the solution significantly, with acceptable
training cost and competitive prediction cost. As a brand
new attempt to solve the NP-hard problem by learning
approach, our study also reveals that neural networks have
the ability to deal with combinational optimization problem
by encoding hidden features of the combination structures.

ACKNOWLEDGEMENT

This work is supported by the Research Grants Council
of Hong Kong, China under No. 14203618, No. 14202919
and No. 14205520. Zhiwei Zhang is supported by National
Key R&D Program of China (Grant No. 2020YFB1707902),
NSFC (Grant No. 62072035) and Open Research Projects of
Zhejiang Lab (Grant No. 2020KE0AB04).

11

REFERENCES

[1] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “Finding
critical users for social network engagement: The collapsed k-core
problem,” in Proc. of AAAI’17.

[2] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad, A. Pinar, and
S. Soundarajan, “Measuring and improving the core resilience of
networks,” in Proc. of WWW’18, 2018.

[3] F. Zhang, L. Yuan, Y. Zhang, L. Qin, X. Lin, and A. Zhou, “Discov-
ering strong communities with user engagement and tie strength,”
in Proc. of DASFAA’18, 2018.

[4] W. Zhu, C. Chen, X. Wang, and X. Lin, “K-core minimization: An
edge manipulation approach,” in Proc. of CIKM’18.

[5] B. C. Csáji, “Approximation with artificial neural networks,” Fac-
ulty of Sciences, Etvs Lornd University, Hungary, vol. 24, p. 48, 2001.

[6] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. R. Salakhutdi-
nov, and A. J. Smola, “Deep sets,” in Proc. of NIPS’17, 2017.

[7] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” Journal of Machine Learning Research,
vol. 11, pp. 1201–1242, 2010.

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in Proc. of KDD’14, 2014.

[9] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proc. of KDD’16, 2016.

[10] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proc. of ICLR’14,
2014.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. of ICLR’17, 2017.

[12] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang, “Semi-
supervised graph classification: A hierarchical graph perspective,”
in Proc. of WWW’19, 2019.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proc. of NIPS’17, 2017.

[14] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in Proc. of AAAI’18,
2018.

[15] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[16] “KONECT (the koblenz network collection),” http://konect.
uni-koblenz.de.

[17] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015.
[Online]. Available: http://networkrepository.com

[18] “Pytorch,” https://github.com/pytorch/pytorch.
[19] “pybind11-Seamless operability between C++11 and Python,”

https://github.com/pybind/pybind11.
[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” in Proc. of ICLR’15, 2015.
[21] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank

citation ranking: Bringing order to the web.” Stanford InfoLab,
Tech. Rep., 1999.

[22] P. Bonacich, “Power and centrality: A family of measures,” Ameri-
can journal of sociology, vol. 92, no. 5, pp. 1170–1182, 1987.

[23] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[24] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Tech. Rep., 2008.

[25] S. Medya, T. Ma, A. Silva, and A. K. Singh, “K-core minimization:
A game theoretic approach,” CoRR, vol. abs/1901.02166, 2019.

[26] J. Luo, H. Molter, and O. Suchý, “A parameterized complexity
view on collapsing k-cores,” in Proc. of IPEC’18, 2018.

[27] S. B. Seidman, “Network structure and minimum degree,” Social
Networks, vol. 5, no. 3, pp. 269 – 287, 1983.

[28] A. Adiga and A. K. S. Vullikanti, “How robust is the core of a net-
work?” in Machine Learning and Knowledge Discovery in Databases,
H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 541–556.

[29] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and
M. Vazirgiannis, “Degeneracy-based real-time sub-event detection
in twitter stream,” 2015.

[30] A. J.-P. Tixier, F. D. Malliaros, and M. Vazirgiannis, “A graph
degeneracy-based approach to keyword extraction,” in EMNLP,
2016.

[31] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and
A. Sharma, “Preventing unraveling in social networks: The an-
chored k-core problem,” in Automata, Languages, and Programming,
A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, Eds., 2012,
pp. 440–451.

[32] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” CoRR,
vol. abs/1611.09940, 2016.

[33] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
Proc. of NIPS’15, 2015.

[34] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proc. of
NIPS’17, 2017.

[35] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine Learning, vol. 8,
no. 3, pp. 229–256, 1992.

[36] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with
graph convolutional networks and guided tree search,” in Proc. of
NIPS’18.

[37] J. Lauri and S. Dutta, “Fine-grained search space classification
for hard enumeration variants of subset problems,” in Proc. of
AAAI’19.

[38] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Eng. Bull.,
vol. 40, no. 3, 2017.

[39] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Trans. on Knowledge and Data Engineering, 2018.

[40] T. M. V. Le and H. W. Lauw, “Probabilistic latent document
network embedding,” in Proc. of ICDM’14.

[41] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
large-scale information network embedding,” in Proc. of WWW’15,
2015.

[42] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proc. of AAAI’17, 2017.

[43] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” CoRR, vol.
abs/1901.00596, 2019.

Kangfei Zhao is a Postdoc Fellow in Depart-
ment of Systems Engineering and Engineering
Management, The Chinese University of Hong
Kong. She obtained Ph.D. in The Chinese Uni-
versity of Hong Kong, under the supervision of
Prof. Jeffrey Xu Yu in 2019 and received her B.E.
degree in University of Science and Technology
of China in 2014. Her research interests focus on
graph analytics/processing systems, graph data
management, in-database machine learning.

Zhiwei Zhang received the B.E. degree in com-
puter science and technology from Renmin Uni-
versity of China in 2010, and the Ph.D. degree in
systems engineering and engineering manage-
ment from the Chinese University of Hong Kong
in 2014. He is currently a professor at Beijing
Institute of Technology, and was a research as-
sistant professor at Hong Kong Baptist University
from 2015 to 2019. His research interests in-
clude graph algorithms, distributed systems and
blockchain.

Yu Rong is a Senior researcher of Machine
Learning Center in Tencent AI Lab. He obtained
the Ph.D. degree from The Chinese University of
Hong Kong in 2016 and joined Tencent AI Lab in
June 2017. His main research interests include
social network analysis, deep graph learning,
and large-scale graph systems. He has pub-
lished several papers on data mining, machine
learning top conferences KDD, WWW, NIPS,
CVPR, ICCV. He has served as a reviewer for
KDD, WWW, CIKM, WSDM, SDM and other jour-

nals such as VLDBJ and TKDE.
12

Jeffrey Xu Yu held teaching positions in the In-
stitute of Information Sciences and Electronics,
University of Tsukuba, Japan, and the Depart-
ment of Computer Science, Australian National
University, Australia. Currently, he is a Professor
in the Department of Systems Engineering and
Engineering Management, the Chinese Univer-
sity of Hong Kong, Hong Kong.

Junzhou Huang is an Associate Professor in
the Computer Science and Engineering depart-
ment at the University of Texas at Arlington. He
received the B.E. degree from Huazhong Univer-
sity of Science and Technology, Wuhan, China,
the M.S. degree from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China,
and the Ph.D. degree in Computer Science at
Rutgers, The State University of New Jersey. His
major research interests include machine learn-
ing, computer vision and imaging informatics.

13

