
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Semi-Supervised Hierarchical Graph
Classification

Jia Li, Yongfeng Huang, Heng Chang and Yu Rong

Abstract—Node classification and graph classification are two graph learning problems that predict the class label of a node and the
class label of a graph respectively. A node of a graph usually represents a real-world entity, e.g., a user in a social network, or a
document in a document citation network. In this work, we consider a more challenging but practically useful setting, in which a node
itself is a graph instance. This leads to a hierarchical graph perspective which arises in many domains such as social network,
biological network and document collection. We study the node classification problem in the hierarchical graph where a “node” is a
graph instance. As labels are usually limited, we design two novel semi-supervised solutions named SEAL-C/AI. SEAL-C/AI adopt an
iterative framework that takes turns to update two modules, one working at the graph instance level and the other at the hierarchical
graph level. To enforce a consistency among different levels of hierarchical graph, we propose the Hierarchical Graph Mutual
Information (HGMI) and further present a way to compute HGMI with theoretical guarantee. We demonstrate the effectiveness of this
hierarchical graph modeling and the proposed SEAL-C/AI methods on text and social network data.

Index Terms—hierarchical graph, graph representation, graph mutual information, active learning.

F

1 INTRODUCTION

G RAPH has been widely used to model real-world en-
tities and the relationship among them. Two graph

learning problems have received a lot of attention recently,
i.e., node classification and graph classification. Node clas-
sification is to predict the class label of nodes in a graph, for
which many studies in the literature make use of the connec-
tions between nodes to boost the classification performance.
For example, [1] enhances the recommendation precision in
LinkedIn by taking advantage of the interaction network,
and [2] improves the performance of document classifica-
tion by exploiting the citation network. Graph classification,
on the other hand, is to predict the class label of graphs,
for which various graph kernels [3]–[6] and deep learning
approaches [7][8] have been designed. In this work, we
consider a more challenging but practically useful setting, in
which a node itself is a graph instance. This leads to a hierar-
chical graph in which a set of graph instances are interconnected
via edges. This is a very expressive data representation, as it
considers the relationship between graph instances, rather
than treating them independently. The hierarchical graph
model applies to many real-world data, for example, a social
network can be modeled as a hierarchical graph, in which
a user group is represented by a graph instance and treated
as a node in the hierarchical graph, and then a number of
user groups are interconnected via interactions or common
members. As another example, a document collection can
be modeled as a hierarchical graph, in which a document
is regarded as a graph-of-words [9], and then a set of
documents are interconnected via the citation relationship.

• Jia Li and Yongfeng Huang are co-first authors and with The Hong Kong
University of Science and Technology.
E-mail: jialee@ust.hk

• Heng Chang is with Tsinghua University.
• Yu Rong is with Tencent AI Lab.

Manuscript received April 19, 2005; revised August 26, 2015.

In this paper, we study hierarchical graph classification, which
predicts the class label of graph instances in a hierarchical graph.

To represent a hierarchical graph, there is a natural
and important question:“given multiple levels of inputs
and representations of a hierarchical graph, how can we
enforce a consistency among different levels of the graph?”
In this work, we propose to use mutual information (MI)
to enforce this consistency. We are motivated by recent
developments of graph MI maximization methods [10][11],
and generalize the MI computation to hierarchical graphs,
which is named Hierarchical Graph Mutual Information
(HGMI). Our theoretical derivations show that HGMI can
be decomposed into a linear combination of node-level MI
[10] and graph-level MI [11]. In this regard, we can use non-
hierarchical graph MI computational methods to compute
HGMI. More specifically, for graph instances, we compute
MI between nodes and instance representations via graph-
level MI computational methods (e.g., INFOGRAPH [11]);
for connections between graph instances, we compute MI
between instances and hierarchical graph representations
via node-level MI computational methods (e.g., GMI [10]).

Another challenge is that the amount of available class
labels is usually very small in real-world data, which limits
the classification performance. To address this challenge, we
take a semi-supervised learning approach to solving the
graph classification problem. We design an iterative algo-
rithm framework which takes turns to update two modules:
Instance Classifier (IC) and Hierarchical Classifier (HC). We
start with the limited labeled training set and build IC,
which produces the embedding vectors of graph instances.
HC takes the embedding vectors as input and produces
predictions. We cautiously select a subset of predicted labels
by HC with high confidence to enlarge the training set.
The enlarged training set is then fed into IC in the next
iteration to update its parameters in the hope of gener-
ating more accurate embedding vectors and predictions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

HC further takes the new embedding vectors for model
update and class prediction. This is our proposed solution,
called SEmi-supervised grAph cLassification via Cautious
Iteration (SEAL-CI), to the graph classification problem.

We also extend this iterative algorithm to the active
learning framework, in which we iteratively select the most
informative instances for manual annotation, and then up-
date the classifiers with the newly labeled instances in a
similar process as described above. This method is called
SEAL-AI in short.

Our contributions are summarized as follows.

• We study semi-supervised hierarchical graph classi-
fication, which is scarcely studied in the literature.
Our proposed solutions SEAL-CI/AI achieve supe-
rior classification performance to the state-of-the-
other graph kernel and deep learning methods, even
when given very few labeled training instances.

• We generalize the MI estimation to the hierarchical
graph domain and propose a new concept named
Hierarchical Graph Mutual Information (HGMI). We
show HGMI can be decomposed by a sum of mutual
information in non-hierarchical graph domain. Upon
this, HGMI maximization can be achieved with the
help of node/graph-level MI maximization.

• We present the HIERARCHICAL GRAPH BENCH-
MARK 1 with both text data and social network
data, with the goal of facilitating reproducible hi-
erarchical graph research. From the social network-
ing platform Tencent QQ, we collect 37,836 QQ
groups with 18,422,331 unique anonymized users,
in which the hierarchical graph is constructed with
common memberships (hierarchy-level) and friend-
ships (instance-level). From the arXiv papers, we
collect 4,666 papers, in which the hierarchical graph
is constructed with citations (hierarchy-level) and
semantics (instance-level)

The remainder of this paper is organized as follows. Sec-
tion 2 gives the problem definition and Section 3 describes
the design of SEAL-C/AI. We report the experimental re-
sults in Section 4 and discuss related work in Section 5.
Finally, Section 6 concludes the paper.

2 PROBLEM DEFINITION

We denote a set of objects as O = {o1, o2, . . . , oN} which
represent real-world entities. We use d attributes to describe
properties of objects, e.g., age, gender.

We use a graph instance to model the relationship be-
tween objects in O, which is denoted as g = (V,A,X),
V ⊆ O is the node set and |V | = n, A is an n× n adjacency
matrix representing the connectivity in g, and X ∈ Rn×d is
a matrix recording the attribute values of all nodes in g.

A set of graph instances G = {g1, g2, . . .} can be in-
terconnected, and the connectivity between the graph in-
stances is represented by an adjacency matrix A. The graph
instances and their connections are modeled as a hierarchical
graph G = (G,A).

A graph instance g ∈ G is a labeled graph if it has a
class label, represented by a vector y ∈ {0, 1}c, where c

1. data and code are available at https://hiergraph.github.io/

: A User Group

: A User

A B

C D
? ?

no-
gambling

Class: game
Group A

Class: non-game

Group B

Class: unknown

Group C
Class: unknown

Group D

Fig. 1: A hierarchical graph with four graph instances
A,B,C,D, each of which corresponds to a user group in
a social network.

is the number of classes. A graph instance is unlabeled if its
class label is unknown. Then G can be divided into two
subsets: labeled graphs Gl and unlabeled graphs Gu, where
G = Gl ∪ Gu, |Gl| = L and |Gu| = U . In this paper, we
study the problem of graph classification, which determines
the class label of the unlabeled graph instances in Gu from
the available class labels in Gl and the hierarchical graph
topological structure. As the amount of available class labels
is usually very limited in real-world data, we take a semi-
supervised learning approach to solving this problem.

Figure 1 depicts a hierarchical graph in the context of a
social network. A,B,C,D denote four user groups. Group
A has the class label of “game”, B has the label of “non-
game”, while the class labels of C and D are unknown.
These four groups are connected via some kind of relation-
ships, e.g., interactions or common members. The internal
structure of each user group shows the connections between
individual users. From this hierarchical graph, we want to
determine the class labels of groups C and D.

3 METHODOLOGY

3.1 Problem Formulation

In our problem setting, we have two kinds of informa-
tion: graph instances and connections between the graph
instances, which provide us with two perspectives to tackle
the graph classification problem. Accordingly, we build two
classifiers: a classifier IC constructed for graph instances and
a classifier HC constructed for the hierarchical graph.

For both classifiers, one goal is to minimize the super-
vised loss, which measures the distance between the pre-
dicted class probabilities and the true labels. Another goal is
to maximize a hierarchical graph mutual information, which
measures the distance among the input hierarchical graph,
IC representations and HC representations. The purpose of
this hierarchical graph mutual information is to enforce a
consistency among different levels of hierarchical graph.

Formally, we formulate the graph classification problem
as an optimization problem:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

𝑒𝑒1
𝑒𝑒2

𝑒𝑒3
𝑒𝑒4

Γ

MI between IC representations
and HC representations

MI between the input 𝐺𝐺 and IC
representations

𝑔𝑔1
𝑔𝑔2

𝑔𝑔3
𝑔𝑔4

Fig. 2: Overview of the proposed hierarchical graph mu-
tual information computation. The orange part shows the
mutual information computation between the input G and
graph instance representations E; the green part shows the
mutual information computation between graph instance
representations E and final hierarchical representations Γ.

arg min ζ(Gl)− ξ(G), (1)

where ζ(Gl) is the supervised loss for the labeled graph
instances, and ξ(G) is the hierarchical graph mutual infor-
mation for all graph instances.

Specifically, ζ(Gl) includes two parts:

ζ(Gl) =
∑
gi∈Gl

(L(yi, ψi) + L(yi, γi)), (2)

where ψi is a vector of predicted class probabilities by IC,
and γi is a vector of predicted class probabilities by HC.
L(·, ·) is the cross-entropy loss function.

The hierarchical graph mutual information (HGMI) ξ(·)
is defined as:

ξ(G) = I(G;E; Γ), (3)

where I(·; ·; ·) denotes the mutual information between a set
of three variables, E denotes the representations derived by
IC and Γ denotes the representations derived by HC. In the
following subsections, we first analyse HGMI and describe
the way to compute HGMI; we then give our design of
classifiers IC and HC, and our detailed training algorithms.

3.2 Analysis of HGMI
We first show HGMI coincides with graph mutual informa-
tion between G and Γ when the hierarchical graph forms a
Markov chain.
Theorem 1. Consider the hierarchical graph forms a Markov

chain, i.e., G→ E → Γ, then

I(G;E; Γ) = I(G; Γ) (4)

here I(G; Γ) is the mutual information between the input
graph instances and hierarchical graph representations.

The proof is trivial, since the three variables form a Markov
chain G→ E → Γ, then I(G; Γ|E) = 0, we have

I(G;E; Γ) = I(G; Γ)− I(G; Γ|E) = I(G; Γ) (5)

It was worth mentioning that the Markov property is quite
reasonable here. For example on text data, upon given

document representation, it is reasonable to assume graph-
of-words inputs (within documents) are irrelevant when
predicting document citations (outside of documents).

We have the following hierarchical graph mutual infor-
mation decomposition theorem to compute HGMI.
Theorem 2. Consider the hierarchical graph forms a Markov

chain, the hierarchical graph mutual information can be de-
composed by a sum of non-hierarchical graph mutual informa-
tion, namely,

I(G;E; Γ) = α(I(G;E) + I(E; Γ)) (6)

here α ∈ [0, 1
2], I(G;E) is the mutual information between

graph instance input and graph representation on instance
level, I(E; Γ) is the mutual information between instance
representation and hierarchical graph representation on hier-
archical level.

To prove Theorem 2, we first introduce two lemmas.
Lemma 1. For any random variable Z1, Z2, Z3, we have

I(Z1;Z2, Z3) ≥ 1

2
(I(Z1;Z2) + I(Z1;Z3)) (7)

here I(Z1;Z2, Z3) is the mutual information between variable
Z1 and the joint distribution of Z2 and Z3 .

To prove Lemma 1, we make use of the chain rule for mutual
information.

I(Z1;Z2, Z3) = I(Z1;Z3) + I(Z1;Z2|Z3)

≥ I(Z1;Z3)
(8)

The last inequality holds as mutual information is non-
negative. Accordingly, we have

I(Z1;Z2, Z3) ≥ I(Z1;Z2) (9)

Based on Eq. 8 and Eq. 9, we complete the proof of Lemma
1.
Lemma 2. For a Markov chain G→ E → Γ, we have

I(E;G,Γ) ≤ I(E;G) + I(E; Γ) (10)

Proof. According to [12], if the conditional distribution
P (Z3|Z1, Z2) is multiplicative, i.e., ∃ two functions s1

and s2, s.t., P (Z3|Z1, Z2) = s1(Z3, Z1)s2(Z3, Z2), then
I(Z1;Z2) ≥ I(Z1;Z2|Z3). Since G → E → Γ is a
Markov chain, we have P (Γ|G,E) = P (Γ|E), which means
P (Γ|G,E) is multiplicative. Thus, I(G;E) ≥ I(G;E|Γ)
holds in our case.

I(E;G,Γ) = I(E; Γ) + I(E;G|Γ)

≤ I(E;G) + I(E; Γ)
(11)

Thus, we complete the proof of Lemma 2. We then prove
Theorem 2,

I(G;E; Γ) = I(G;E)− I(G;E|Γ)

= I(G;E)− (I(E;G,Γ)− I(E; Γ))

= I(G;E) + I(E; Γ)− I(E;G,Γ)

= α(I(G;E) + I(E; Γ))

(12)

The last equality holds as we have 1
2 (I(G;E) + I(E; Γ)) ≤

I(E;G,Γ) ≤ I(G;E) + I(E; Γ), based on Lemma 1 and
Lemma 2. Thus, Theorem 2 is proved.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

𝑒𝑒1 𝑒𝑒2

𝑒𝑒3 𝑒𝑒4

ℎ(Γ)Input Layer

Hierarchical Graph Representation

𝛾𝛾4

Output Layer

𝛾𝛾3

𝛾𝛾1 𝛾𝛾2

𝑒𝑒4

FC Layer

Graph Instance Representation

𝜓𝜓4 �𝑦𝑦
Labels for
Cautious
Iteration

𝑔𝑔1 𝑔𝑔2

𝑔𝑔3 𝑔𝑔4

Fig. 3: Schematic diagram of the learning framework SEAL-CI. There are two subroutines: graph instance representation
(in the orange box) and hierarchical graph representation (in the green box).

We use Figure 2 to illustrate the idea to compute HGMI.
One naive method to compute HGMI is according to the
definition, which inevitably involves with the computation
of joint distribution P (G,E,Γ) and is not tractable in gen-
eral [13]. With Theorem 2, we decouple the computation
of HGMI into a sum of the computation of graph mutual
information without hierarchies, which is tractable as used
in many previous works [14][10]. Next we present the
design of IC and HC classifier, and then give the detailed
way to maximize HGMI in Section 3.4.

3.3 Design of Classifiers
Classifier IC takes a graph instance as input. As different
graph instances have different numbers of nodes, IC is
expected to handle graph instances of arbitrary size. Clas-
sifier HC takes the hierarchical graph as input, in which
individual graph instances are the “nodes”. We propose to
embed a graph instance gi ∈ G into a fixed-length vector
ei via IC first. Then HC can take as input the embedding
vectors of graph instances and the adjacency matrix A. In
particular, IC takes as input the adjacency matrix Ai and
attribute matrix Xi of an arbitrary-sized graph instance
gi, and outputs an embedding vector ei and a vector of
predicted class probabilities ψi, i.e., (ei, ψi) = IC(Ai, Xi).
HC takes the embedding vectors E = {ei}L+U

i=1 and A, and
outputs the predicted class probabilities Γ = {γi}L+U

i=1 , i.e.,
Γ = HC(E,A).

3.3.1 Graph instance representation
The task of graph instance representation is to produce
a fixed-length embedding vector of a graph instance, for
which, however, we identify two challenges:

• Size invariance: How to design the network structure
to flexibly take an arbitrary-sized graph instance and
produce a fixed-length embedding vector?

• Permutation invariance: How to derive the representa-
tion regardless of the permutation of nodes?

Recently graph pooling has emerged as a research topic
that can be used to tackle the above challenges. Some
common practices include DIFFPOOL [15], Attention-based
Pool [16][17][18], MinCut-Pool [19]. In particular, [18] shows
Attention-based Pool is permutation-invariant by connect-
ing with Weisfeiler-Lehman test. To this end, in IC, we first
utilize a multi-layer Graph Neural Network (GNN) [20] to

smooth each node’s features over the graph’s topology. Then
we adopt a graph pooling method and transform a variable
number of smoothed nodes into a fixed-length embedding
vector. Finally, the embedding vector is cascaded with a
fully connected layer and a softmax function, in which
the label information can be leveraged to discriminatively
transform the embedding vector e into ψ.

Formally, we are given the adjacency matrix A ∈ Rn×n
and the attribute matrix X ∈ Rn×d of a graph instance g as
inputs. We apply a multi-layer GNN network:

H = GNN(A,X), (13)

here we get a set of representation H ∈ Rn×v for nodes in
g. Note that the representation H is size variant, i.e., its size
is still determined by the number of nodes n. So next we
utilize the graph pooling mechanism:

e = Pooling(H). (14)

here consider Attention-based Pool is adopted, as the at-
tention weight is used to multiply with H and flatten the
representation, e ∈ Rm is size invariant and does not
depend on the number of nodes n any more.

To summarize, we use GNN and graph pooling to con-
struct the instance-level classifier IC. It produces not only
the estimated class probability Ψ = {ψi}L+U

i=1 , but also
instance representations E = {ei}L+U

i=1 , which is the input
for classifier HC in the next.

3.3.2 Hierarchical graph representation

Given E and the adjacency matrix A ∈ R(L+U)×(L+U),
our next task is to infer the parameters of classifier HC
and derive the predicted probabilities Γ = {γi}L+U

i=1 . This
problem falls into the setting of non-hierarchical graph
setting where E can be treated as the set of node features.
In this context, we consider again a multi-layer GNN. Thus
the model becomes:

Γ = HC(E,A) = softmax(GNN(E,A)), (15)

where Γ ∈ R(L+U)×c is the derived hierarchical graph
representation. With Γ and E, next we introduce the way
to maximize HGMI.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

3.4 Maximization of HGMI
With Theorem 2, the computation of HGMI is reduced into
MI between graph input and graph-level representation
(I(G;E)) and MI between graph input and node-level rep-
resentation (I(E; Γ)), in which we have many choices such
as INFOGRAPH [11] and GMI [10].

To compute I(G;E), we use the method of INFO-
GRAPH [11], where MI is computed between the graph
input G and graph-level representation E. More specifically,
it is shown in [11] that maximizing the global I(G;E) can be
estimated by MI between node representations and graph-
level representations,

I(G;E) =
L+U∑
i

1

L+ U

n∑
j

1

n
I(hij ; ei), (16)

where hij is a node representation sampled from Hi. The
core thus becomes how we compute I(hij ; ei). In this work,
we resort to Jensen-Shannnon MI estimator (JSD),

I(hij ; ei) = −sp(−DI(hij , ei) + Eĥij
sp(DI(ĥij , ei)), (17)

where DI : Rv × Rm → R is a discriminator constructed
by a neural network with parameters DI . ĥij is a negative
example. sp(x) = log(1 + exp(x)) is the soft-plus function.
For a detailed graph-level negative sampling process, please
see INFOGRAPH [11].

To compute I(E; Γ), we adopt the method of GMI [10],
where MI is computed between the graph feature input and
node-level representation. More specifically, it is shown in
[10] that, for a node-level representation γi, maximizing the
global I(E; γi) can be decomposed as a weighted sum of
local MIs,

I(E; γi) =
L+U∑
j

wijI(ej ; γi), (18)

here we adopt the mean version of GMI, meaning wij =
1

L+U . To compute I(ej ; γi), we use JSD again,

I(ej ; γi) = −sp(−DH(ej , γi) + Eêjsp(DH(êj , γi)), (19)

where DH : Rm × Rc → R is a discriminator constructed by
a neural network with parameters DH . êj is a negative ex-
ample. For a detailed node-level negative sampling process,
please see GMI [10].

3.5 The Proposed SEAL-CI Model
In this subsection, we present our method to minimize the
objective function Eq. 1. A naive way would be directly
minimizing Eq. 1 in an end-to-end fashion with the limited
labels. However, in real-world scenarios, the number of
labeled graph instances L can be quite small compared to
the number of unlabeled instances U . In this context, neural
network based classifiers may suffer from the problem of
overfitting.

Following previous works [21][2], we use the idea of
iterative algorithm to alternate optimizing the two modules
of IC and HC by trusting a subset of predictions of HC. To
be more specific, we combine the instance representation in
Section 3.3.1 and hierarchical representation in Section 3.3.2
into one iterative algorithm. We build IC to produce instance
representation Et for all graph instances in iteration t, and

Algorithm 1: SEAL-CI

Input: G = {G,A}.
Output: Γt+1.

1 Initial: Gtmp = ∅, G0
l = Gl, t = 0;

2 while tλ ≤ U do
3 Wt+1 ← arg min ζ(Gtl |Wt)− ξ(Gt|Wt);
4 Ψt+1, Et+1 ← IC(A,X|Wt+1);
5 Γt+1 ← HC(Et+1,A|Wt+1);
6 Gtmp ← T (tλ,Γt+1

Gu
);

7 Gt+1
l ← Gl ∪Gtmp;

8 Gtmp = ∅;
9 Return Γt+1;

then feed Et into HC to get the predicted probabilities Γt.
We then make use of Γt to update the parameters of IC and
generate Et+1, which is then used as the input of HC in
iteration t + 1. Figure 3 depicts the overall framework of
this iterative process.

3.5.1 How to utilize Γt?

To update the instance representations, a naive approach
is feeding the whole set of Γt for the parameter update in
IC, which is the idea of the original ICA [2]. However, not
all Γt are correct in their predictions. The false predictions
may lead the update of embedding neural network to
the wrong direction. Within the set of unlabeled graphs,
different γ could contribute differently to the update of
embedding neural network. To this end, we make use of
the idea of [21], a variant of the original ICA, and cautiously
exploit a subset of Γt to update the parameters of IC in
each iteration. Specifically, in iteration t, we choose the
tλ most confident predicted labels while ignoring the less
confident predicted labels. This operation continues until all
the unlabeled samples have been utilized. This algorithm is
called SEmi-supervised grAph cLassification via Cautious
Iteration (SEAL-CI) and is presented in Algorithm 1. Note
here W is the set of all the parameters of IC and HC.
In line 6, the training set for IC has been enlarged by tλ
instances and it is done by “committing” these instances’
labels from their maximum probability. In other words, the
newly enrolled training instances are found by:

T (λ,Γ) = top(max
γ∈Γ

γ, λ). (20)

Here function top(·, λ) is used to select the top λ instances
and function max γ is used to select the maximum value in
the probability vector γ.

3.6 The Proposed SEAL-AI Model

Our proposed model is easy to extend to the active learning
scenario. In case further annotation is available, we can per-
form active learning and ask for annotations with a budget
of B. Denote the set of graph instances being annotated as
GB , then the objective function in the active learning setting
is re-written as:

min f(G|B,W)

s.t. |GB | ≤ B,
(21)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 2: SEAL-AI

Input: G = {G,A}.
Output: Γt+1.

1 Initial: Gtmp = ∅,G0
B = ∅, G0

l = Gl, G0
u = Gu, t = 0;

2 while |GtB | ≤ B do
3 Wt+1 ← arg min ζ(Gtl |Wt)− ξ(Gt|Wt);
4 Ψt+1, Et+1 ← IC(A,X|Wt+1);
5 Γt+1 ← HC(Et+1,A|Wt+1);
6 Gtmp ← arg max|Gtmp|=k ξ(G

t
u \Gtmp|Wt+1);

7 Gt+1
B ← GtB ∪Gtmp;

8 Gt+1
l ← Gtl ∪Gtmp;

9 Gt+1
u ← Gtu \Gtmp;

10 Gtmp = ∅;
11 Return Γt+1;

where f(G|B,W) = ζ(Gl ∪ GB |W) − ξ(Gu \ GB |W).
This is a mixed combinatorial and continuous optimization
problem. It is very hard to infer the model parameters and
the active learning set GB simultaneously. By definition,
the active learning set GB is intractable unless the model
parameters are completely inferred. To solve this chicken-
and-egg problem, we decompose the objective function
into two sub-steps: parameter optimization and candidate
generation. Then we optimize f(G|B,W) iteratively. This
algorithm is called SEmi-supervised grAph cLassification
via Active Iteration (SEAL-AI) and is shown in Algorithm 2.

At the beginning of this iterative process, we optimize
the supervised loss ζ(Gl|W) and HGMI based on current
labeled graphs in Gl (line 3 in Algorithm 2). In active learn-
ing, the choice of candidate generator is a key component.
We exploit the idea of [22][23] and choose the candidate
graph instances Gtmp by maximizing the current HGMI
based on the new parameter obtained in the first step (line
6 in Algorithm 2). At last we label Gtmp and update GB , Gl
and Gu respectively (line 7-9 in Algorithm 2).

Formally, we follow the “most uncertain” candidate se-
lection criteria in active learning to reduce the model uncer-
tainty[23]–[25], and select the instances whose annotations
will result in the maximum mutual information among the
unlabeled graph instances:

arg max ξ(Gu \GB |W) (22)

Here HGMI is adopted and can be decomposed into linear
combinations of individual MIs (I(hij ; ei) and I(ej ; γi)), by
Theorem 2, Eq. 16 and Eq. 18. Thus, we can choose the
candidates by:

zi =
n∑
j

1

n
I(hij ; ei) +

L+U∑
j

1

L+ U
I(ej ; γi). (23)

Then we choose k instances with the smallest values. For the
consideration of efficiency, I(ej ; γi) can be computed within
one hop of instance gi.

3.7 Complexity Analysis

We analyze the computational complexity of our proposed
methods. Here we only focus on Algorithm 1, since Algo-
rithm 2 is almost the same except the step of selecting

candidate graph instances to the training set. In Algorithm 1,
the intensive parts in each iteration contain the updates of
IC and HC as well as the selection of candidate instances.
We discuss each part in details below.

Regarding IC, the core is to compute the activation
matrix H in Eq. (13) where the matrix-vector multiplications
are up to O(E1d) flops for one input graph instance; here
E1 denotes the number of edges in the graph instance
and d is the input feature dimension. Thus, it leads to the
complexity of O(E1(L + U)d) by going through all L + U
graph instances.

Next, the computation by HC in Eq. (15) requires
O(E2m) flops in total, where E2 denotes the number of
links between graph instances. Then in candidate selection,
performing comparisons between all unlabeled graph in-
stances has a complexity of O(L + U) given the outputs of
two classifiers IC and HC.

Overall, the complexity of our method is O(E1(L +
U)d+E2m) which scales linearly in terms of the number of
edges in each graph instance (i.e., E1), the number of links
between graph instances (i.e., E2) and the number of graph
instances (i.e., (L+ U)).

4 EXPERIMENTS

We evaluate SEAL-C/AI methods on synthetic, text and
social network data sets.

4.1 Synthetic Data

We evaluate the performance of SEAL-C/AI on synthetic
data. We first give a description of the synthetic generator,
then visualize the learned embeddings. Finally we compare
our methods with baselines in terms of classification accu-
racy.

4.1.1 Synthetic Data Generation

The benchmark data set Cora [26] contains 2708 papers
which are connected by the citation relationship. We borrow
the topological structure of Cora to provide the skeleton
(i.e., edges) of our synthetic hierarchical graph. Then we
generate a set of graph instances, which serve as the nodes
of this hierarchical graph. Since there are 7 classes in Cora,
we adopt 7 different graph generation algorithms, that is,
Watts-Strogatz [27], Tree graph, Erdős-Rényi [28], Barbell
[29], Bipartite graph, Barabási-Albert graph [30] and Path
graph, to generate 7 different types of graph instances, and
connect them in the hierarchical graph.

Specifically, to generate a graph instance g, we randomly
sample a number from [100, 200] as its size n. Then we
generate its structure and assign the class label according
to the graph generation algorithm. In this step, the param-
eter p in Watts-Strogatz, Erdős-Rényi, Bipartite graph and
Barabási-Albert graph is randomly sampled from [0.1, 0.5],
the branching factor for Tree graph is randomly sampled
from [1, 3]. At last, to make this problem more challenging,
we randomly remove 1% to 20% edges in the generated
graph g. The statistics of the generated graph instances are
listed in Table 1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1: Statistics of generated graph instances

Type Number Nodes Edges Density

Watts-Strogatz 351 173 347 2.3%
Tree 217 127 120 1.5%

Erdős-Rényi 418 174 3045 20%
Barbell 818 169 2379 16.3%

Bipartite 426 144 1102 10.6%
Barabási-Albert 298 173 509 3.4%

Path 180 175 170 1.1%

Watts-Strogatz
Tree
Erdos-Renyi
Barbell

Bipartite
Barabasi-Albert
Path

Fig. 4: Two-dimensional visualization of graph embed-
dings generated from the synthesized graph instances using
SAGE. The nodes are colored according to their graph types.

4.1.2 Visualization

To have a better understanding of the synthesized graph
instances, we split all 2708 graph instances into two parts.
1708 instances are used for training and the remaining 1000
instances are used for testing. We apply SAGE [16] on the
training set and derive the embeddings of the 1000 testing
instances. We then project these learned embeddings into a
two-dimensional space by t-SNE [31], as depicted in Figure
4. Each color in Figure 4 represents a graph type. As we
can see from this two-dimensional space, the geometric
distance between the graph instances can reflect their graph
similarity properly.

4.1.3 Baselines and Metrics

We use 6 approaches as our baselines:

• GK-SVM [5], which calculates the graphlet count
kernel (GK) matrix, then GK-SVM feeds the kernel
matrix into SVM [32].

• WL-SVM [6], which is similar as above but using the
Weisfeiler-Lehman subtree kernel (WL).

• graph2vec-GCN [8], which embeds the graph in-
stances by graph2vec and then feeds the embeddings
to GCN.

• SAGE [16], which ignores the connections between
graph instances and treats them independently.

• MIRACLE [33], which uses the multi-view contrast
learning method to exploit relation between the
structure of graph instance level and the one at the
hierarchical graph level.

TABLE 2: Comparison of different methods on the synthetic
data set for semi-supervised graph classification

Algorithm Accuracy

*1
GK-SVM 77.8%
WL-SVM 83.4%

SAGE 85.7%

*2
graph2vec-GCN 85.2%

MIRACLE 86.7%
SEAL 87.8%

*3
SEAL-CI 91.2%
SEAL-AI 92.4%

• SEAL is the base of SEAL-A/CI, which differs with
SEAL-A/CI in two ways: 1) it does not consider label
enlargement, and 2) it is trained in an end-to-end
fashion with the given class labels.

We use 300 graph instances as the training set for all meth-
ods except SEAL-AI, for which only 140 graphs are used as
labeled graph instances at hand and then B = 160 is set for
active learning. We use 1000 graph instances as the testing
set. We run each method 5 times and report its average
accuracy. The number of epochs for graph2vec is 1000 and
the learning rate is 0.3. For SEAL-A/CI, we use SAGE [16] as
the graph pooling method. We use a two-layer GCN in IC,
in which the first GCN layer has 32 output channels and the
second GCN layer has 4 output channels. The dense layer
has 48 units with a dropout rate of 0.3.

4.1.4 Results
Table 2 shows the experimental results for semi-supervised
graph classification. Among all approaches, SEAL-C/AI
achieve the best performance. In the following, we analyze
the performance of all methods categorized into 3 groups.
Group *1: All the embedding-based methods perform better
than these two kernel methods, which proves that embed-
ding vectors are effective representations for graph instances
and are suitable input for graph neural networks.
Group *2: graph2vec-GCN achieves 85.2% accuracy, which
is comparable to that of SAGE, but lower than that of SEAL-
C/AI. One possible explanation is that graph2vec is an
unsupervised embedding method, which fails to generate
discriminative embeddings for classification. Another pos-
sibility is that the 300 training instances do not include very
informative ones. These limitations of graph2vec motivate
us to use supervised graph representation modules such
as SAGE and the label enlargement framework in SEAL-
C/AI. MIRACLE and SEAL generate the graph instance
representations in a supervised way, and they outperform
graph2vec-GCN by more than 1.5%.
Group *3: Both SEAL-CI and SEAL-AI outperform MIR-
ACLE and SEAL, which proves the effectiveness of our
hierarchical graph perspective and the label enlargement
algorithm for semi-supervised graph classification. SEAL-
AI outperforms SEAL-CI slightly by 1.2%. This shows, al-
though SEAL-CI can make use of more training samples, it
is still influenced by the false prediction cases of IC.

4.1.5 Influence of the number of labeled training instances
We examine how the number of labeled training instances
affects the performance of our methods. We train SAGE and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

75%

80%

85%

90%

95%

140 180 220 260 300

A
cc
u
ra
cy

The number of labeled training instances

SEAL-AI

SEAL-CI

SAGE

Fig. 5: Accuracy with different number of labeled training
instances on synthetic data for semi-supervised graph clas-
sification.

SEAL-CI with a label size of {140, 180, 220, 260, 300}. We
train SEAL-AI with 140 labeled instances and then set the
budget B for active learning at {0, 40, 80, 120, 160}. Thus
the three methods have the same number of labeled training
instances. We set λ = 40 in SEAL-CI and k = 10 in SEAL-
AI. We run all methods 5 times, and plot their average
accuracy in Figure 5. As we can see from Figure 5, when
the number of labeled training instances is 140, SEAL-CI
performs the best since it can utilize more training samples.
As the number of labeled training instances increases, the
performance of SEAL-AI improves dramatically. SEAL-AI
catches up with SEAL-CI at 260 labeled training instances
and outperforms SEAL-CI at 300 labeled training instances.
It validates that SEAL-AI can make use of the iterations to
find informative and accurate training samples. Meanwhile
SEAL-CI trusts the prediction of IC conditionally on its
confidence, which may bring some noise to the learning
process. SEAL-C/AI outperform SAGE in all cases, which
makes sense because SEAL-C/AI make good use of the hier-
archical graph setting and consider the connections between
the graph instances for classification.

4.2 Text Data
We evaluate SEAL-C/AI on the arXiv paper dataset. Firstly,
We introduce the compositions of arXiv paper dataset and
present how to construct hierarchical graph from text data.
Then, we show the evaluation results and give some insights
on how to construct a hierarchical graph for text data.

4.2.1 Data Description
arXiv is an open-access repository of electronic preprints.
We collect 4666 Computer Science (CS) arXiv papers in-
dexed by Microsoft Academic Graph (MAG) [34]. These
papers belong to five subject areas including AI, CL, IT, LG
and CV. The arXiv papers data forms a citation network
which indicates citation relationships. Each paper consists
of two parts: title and abstract. The statistics of the arXiv
paper dataset is listed in Table 3.

The connections among graph instances (i.e., papers) are
provided by citation relations. Each paper is a semantic
graph instance constructed from its title and abstract. There

TABLE 3: Statistics of arXiv paper data

Class Number Length of title Length of abstract

AI 232 8.57 158.04
CL 648 9.25 140.36
IT 909 10.12 170.29
LG 1157 8.69 160.63
CV 1720 9.41 170.54

TABLE 4: Comparison of different methods on arXiv Paper
data for semi-supervised graph classification

Algorithm Accuracy

*1
GK-SVM 38.7%
WL-SVM 35.1%

graph2vec-GCN 42.7%

*2
Bert-MLP 63.7%

Bert-IC 70.1%
Bert-HC 75.2%

*3 MIRACLE 78.4%
SEAL 78.8%

*4 SEAL-CI 79.4%
SEAL-AI 80.7%

are three type of nodes in a semantic graph instance: abstract
node, title node and argument nodes. Specifically, for each
sentence in abstract, we parse it into a tuple with Semantic
Role Labeling (SRL) toolkit developed by AllenNLP 2. For
each tuple, we regard its elements as the argument nodes of
the semantic graph. The node features of the semantic graph
are extracted by pretrained Bert model [35]. The connections
within the semantic graph are created as the following:
1) same tuple, if two nodes are from the same tuple, we
connect them, and 2) vocabulary overlapping, we connect
the node pair if the size of overlapped words is larger than
half of the minimum size of any text node. We show an
example of hierarchical graph of arXiv papers data in the
Figure 6.

4.2.2 Baselines and Metrics

In addition to the set of baselines in Section 4.1.3, we
compare with the following Bert-feature baselines:

• Bert-MLP, which classifies arXiv papers by feeding
average features of title and abstract into a multi-
layer perceptron (MLP).

• Bert-IC, which feeds semantic graph instances into IC
and classifies arXiv papers in an independent graph
classification fashion.

• Bert-HC, which feeds average features of title and
abstract into HC and classifies arXiv papers in a
transductive node classification fashion.

400 graph instances are used as labeled training instances for
all methods except SEAL-AI, for which only 300 are used as
labeled training instances at hand and then B is set to 100
for active learning. We use 2000 instances for testing for all
methods. We set the dimension of Bert node feature to 768.
We use average pool in IC. We set λ = 1 and updated times
t = 100 for SEAL-CI, and k = 1 for SEAL-AI. We run each
method 3 times and report its average accuracy.

2. https://demo.allennlp.org/semantic-role-labeling

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Citation Network Semantic Network

Hierarchical character word models for language
identification

[S1] Social media messages' brevity and unconventional

spelling pose a challenge to language identification.

[S2] We introduce a hierarchical model that learns

character and contextualized word-level representations

for language identification.

Abstract:

Title: Graph:

ARG1ARG0

……

ARG-PRP

ARG1

Title
Node Abstract

Node

ARG1ARG0
S1

S2
ARG1ARG0

ARG-PRP

Same tuple
Vocab overlap

ARG0

Fig. 6: An illustration of the hierarchical graph of arXiv papers data

4.2.3 Results

Table 4 shows the experimental results for semi-supervised
graph classification on arXiv paper data. SEAL-C/AI obtain
the state-of-the-art performances among all baselines. To an-
alyze the results of these baselines, all methods are divided
into four group as the following.
Group *1: Both GK-SVM and WL-SVM only utilize the
structural information of semantic graph instances. And
their classification accuracies are lower than 40%, which
indicates that structural information of semantic graph in-
stances is not enough to obtain satisfied performance on
text data. Graph2vec-GCN tries to exploit both structure of
semantic graph instances and the hierarchical graph but still
has a weak performance with an accuracy of 42.7%.
Group *2: In this group, we show the performance of several
baselines based on Bert. Bert-MLP only uses Bert features
extracted from title and abstract, and obtains an accuracy
of 63.7%. Bert-IC outperforms Bert-MLP by about 6.4%,
by combing both structural and Bert features of text data.
Bert-HC, by utilizing the connections between Bert features
of title and abstract, achieves the best performance among
baselines within Group *2.
Group *3: Both SEAL and MIRACLE aim to minimize mu-
tual information between graph instance representations
and hierarchical representations and differ in the measure-
ment of consistency. SEAL and MIRACLE outperform base-
lines in Group *1 with a margin of 30% and Group *2 with
a margin of more than 3%.
Group *4: SEAL-C/AI outperform MIRACLE and SEAL.
Moreover, SEAL-AI outperforms SEAL-CI by about 1%,
which demonstrates the effectiveness of the active learning
algorithm 2.

4.2.4 Discussion

How to construct hierarchical graphs from text data is an
open question. In the above experiment, we use semantic
parsing techniques to construct graph instances for papers,
and citation relationships to connect these papers. We think
hierarchical graph structures could be a good paradigm
to boost the performance of Natural Language Processing
classification tasks. Moreover, it is worth mentioning that
there are several other ways to construct semantic graphs
such as Name Entity Recognition (NER).

TABLE 5: Statistics of collected Tencent QQ groups

Class label Number Nodes Edges Density

game 1,773 147 395 5.48%
non-game 36,063 365 1586 3.28%

4.3 Social Network Data
In this section, we evaluate SEAL-C/AI on Tencent QQ
group data. We describe the characteristics of this data set
and then present the experimental results. Finally, we have
some open discussions on how to construct a hierarchical
graph for social network data.

4.3.1 Data Description
Tencent QQ is a social networking platform in China with
nearly 800 million monthly active users3. There are around
100 million active online QQ groups. In this experiment, we
select 37,836 QQ groups with 18,422,331 unique anonymized
users. For each user, we extract seven personal features:

• number of days ever since the registration day;
• most frequently active area code in the past 90 days;
• number of friends;
• number of active days in the past 30 days;
• number of logging in the past 30 days;
• number of messages sent in the past 30 days;
• number of messages sent within QQ groups in the

past 30 days.

We have 298,837,578 friend relationships among these
users. 1,773 groups are labeled as “game” and the remaining
groups are labeled as “non-game”.

We construct the hierarchical graph from this Tencent
QQ group data as follows. A user is treated as an object,
and a QQ group as a graph instance. The users in one group
are connected by their friendship. The attribute matrix X
is filled with the attribute values of the users. The statistics
of the graph instances are listed in Table 5. We build the
hierarchical graph from the graph instances via common
members across groups, that is, if two groups have more
than one common member, we connect them.

4.3.2 Baselines and Metrics
We use the same set of baselines as in Section 4.1.3. 1000
graph instances are used as labeled training instances for all

3. https://www.tencent.com/en-us/articles/17000391523362601.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

100 300 500 700 900 1100 1300 1500 1700 1900F
al

se
 P

re
d
ic

ti
o
n

R
at

e

λ

Fig. 7: The false prediction rate of IC with λ in SEAL-CI.

TABLE 6: Comparison of different methods on Tencent QQ
group data for semi-supervised graph classification

Algorithm Macro-F1

*1
GK-SVM 48.8%
WL-SVM 47.8%

SAGE 54.7%

*2
graph2vec-GCN 48.1%

MIRACLE 80.3%
SEAL 84.3%

*3 SEAL-CI 85.5%
SEAL-AI 87.1%

methods except SEAL-AI, for which only 500 are used as
labeled training instances at hand and then B is set to 500
for active learning. We use 10,000 instances for testing for all
methods. We run each method 3 times and report its average
performance. For IC, we use SAGE and set the parameters
as the same in Section 4.1. Since the class distribution is
extremely imbalanced in this data set, we report the Macro-
F1 instead of accuracy.

4.3.3 Results
Table 6 shows the experimental results. SEAL-C/AI outper-
form GK, WL and graph2vec by at least 36% in Macro-
F1. SEAL beats MIRACLE by about 4%, and SEAL-A/CI
outperforms SEAL and MIRACLE with a margin of more
than 1.2%. SEAL-AI outperforms SEAL-CI by 1.6%. Next
we provide the reason why SEAL-AI outperforms SEAL-
CI on this data set. Figure 7 shows the false prediction
rate (i.e., the percentage of misclassified instances) within
the λ most confident predictions of IC. As we can see, the
false prediction rate increases as λ increases and it reaches
2.4% when λ = 2000. In the framework of SEAL-CI, as
the iteration goes on, we shall bring in more noise to the
parameter update of SAGE, while all the training samples
in SEAL-AI are informative and correct. This explains why
SEAL-AI outperforms SEAL-CI on this Tencent QQ group
data.

4.3.4 Visualization
We provide visualization of a “game” group and its neigh-
borhood in Figure 8. The left part is the ego network of the
center “game” group. In the one-hop neighborhood of this
“game” group, there are 10 “game” groups and 19 “non-
game” groups. “Game” groups are densely interconnected
with a density of 34.5%, whereas “non-game” groups are
sparsely connected with a density of 8.8%. The much higher
density among “game” groups validates that common mem-
bership is an effective way to relate them in a hierarchical

: A Non-game Group

: A Game Group

: A User

Fig. 8: The ego network of a “game” group. The left side
is the ego network, in which “game” groups are in red and
“non-game” groups are in blue. The right side is the internal
structure of the ego “game” group, in which a bigger node
indicates a larger importance, and a darker color implies a
larger node degree.

graph for classification. The right part depicts the internal
structure of the ego “game” group with 22 users. A bigger
node indicates a larger importance obtained by SAGE, and
a darker green color implies a larger node degree. These 22
members are loosely connected and there are no triangles.
This makes sense because in reality online “game” groups
are not acquaintance networks. Regarding the learned node
importance, node 1 has the highest importance as it is the
second active member and has a large degree in this group.
Node 16 is also important since it has the highest degree
in this group. The “border” member 5 has a big attention
weight since it has the largest number of days ever since the
registration day and is quite active in this group.

4.3.5 Discussion
How to construct a hierarchical graph from social network
is an open question. In the above experiment, we connect
two QQ groups if they have more than one common mem-
ber (i.e., > 1). When we change the threshold, it directly
affects the edge density in the hierarchical graph, and may
influence the classification performance. For example, if we
connect two QQ groups when they have one common mem-
ber or more (i.e., ≥ 1), the edge density is 2.8% compared
with 0.27% in the first setting. A proper setting of this
threshold is data dependent, and can be determined through
a validation set.

5 RELATED WORK

This work is related to semi-supervised classification of
networked data, graph representation, graph mutual infor-
mation maximization and active learning.

Most work on semi-supervised learning for networked
data aims to utilize the network structure to boost the learn-
ing performance. The assumption is that network context
can provide additional information that is not covered by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

node attributes. Ever since the pioneer work of Sen et al.
[2], Iterative Classification Algorithm (ICA) has become a
paradigm for networked data with limited annotations. In
ICA, for each node a local classifier takes the estimated
labels of its neighborhood and its own features as input,
and outputs a new estimated label. The iteration continues
until adjacent estimations stabilize. In ALFNET [22], the
authors first cluster the network nodes into several groups,
and design a content-only classifier CO and a collective
classifier CC. Based on the disagreement score of CO and
CC in each iteration, a candidate instance set is generated
from different clusters and labeled. Then both CO and CC
are re-trained using the labeled set until convergence. One
main difference between ICA and ALFNET is that ICA
does not require human intervention while ALFNET needs
human annotation in case labels of the candidate set are not
available. Recent work has focused on using deep learning
neural networks to further improve the performance. [36]
leverages both network context and node features by jointly
training node embedding to predict the class label and the
context of the network. Later Kipf and Welling [20] simplify
the loss design by only considering the supervised loss
while network context is exploited by the GCN operator.
Our problem is motivated by these previous works but
different from all of the above, as the studied graph is
hierarchical.

Representation learning on graphs has been proposed
to transform instances in topological space into fixed-size
vectors in Euclidean space in which geometric distance re-
flects their structural similarity. Some pioneer works include
node-level representation [37][38]. In terms of graph-level
representation, [39] uses CBOW and skip-gram model [40],
previously proven to be successful in natural language
processing, to learn a new graph kernel. Meanwhile, some
other methods focus on generating graph embeddings by
integrating node embeddings. [7] proposes a spatial-based
graph CNN operator and then concatenates these obtained
node representations by imposing a problem-specific node
ordering. [41] defines a “graph coarsening” operation by
first clustering the node representations and then applying
a max-pooling operation.

There has been a surging interest in using MI to derive
unsupervised graph representations recently. For node-level
representations, DGI [14] maximizes MI between a graph
summery representation and node-level representations and
shows that maximizing this kind of MI is equivalent to
maximizing the one between the node features and node-
level representations. Later, GMI [10] directly approaches
MI computation by comparing the node input and node-
level representations, without the overheads of an extra
graph summery representation. For graph-level represen-
tations, INFOGRAPH [11] extends the idea of DGI to the
field of graph-level representation and contrasts graph-level
and subgraph-level representations. Our work advances
this research area by proposing hierarchical graph MI and
develops an tractable computation method with guarantees.

Active learning has been integrated in many collective
classification methods [42][22] to find the most informative
samples to be labeled. However, research that generalizes
active learning with deep semi-supervised learning is still
sparse. The closest work is [43] in which the authors utilize

active learning to incrementally fine-tune a CNN network
for image classification. Our solution SEAL-AI is different
in the sense that the informative samples selected by active
learning are used to update the parameters of the graph
embedding network, whose output is then fed into HC in
an iterative framework.

6 CONCLUSION
In this paper, we study the problem of semi-supervised
hierarchical graph classification. To enforce a consistency
among different levels of the hierarchical graph, we pro-
pose Hierarchical Graph Mutual Information (HGMI) and
show HGMI can be computed via non-hierarchical graph
mutual information computation methods. We build two
classifiers IC and HC at the graph instance level and the
hierarchical graph level respectively to fully exploit the
available information. Our semi-supervised solutions SEAL-
C/AI adopt an iterative framework to update IC and HC
alternately with an enlarged training set. We present two
hierarchical graph benchmarks and demonstrate that SEAL-
C/AI outperform other competitors by a significant margin
in accuracy/Macro-F1.

REFERENCES
[1] R. Ramanath, H. Inan, G. Polatkan, B. Hu, Q. Guo, C. Ozcaglar,

X. Wu, K. Kenthapadi, and S. C. Geyik, “Towards deep and
representation learning for talent search at linkedin,” in CIKM,
2018, pp. 2253–2261.

[2] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T.
Eliassi-Rad, “Collective classification in network data,” AI maga-
zine, vol. 29, no. 3, pp. 93–106, 2008.

[3] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on
graphs,” in ICDM, 2005, pp. 74–81.

[4] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in Learning theory and kernel
machines, Springer, 2003, pp. 129–143.

[5] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and
K. M. Borgwardt, “Efficient graphlet kernels for large graph
comparison,” in AISTATS, 2009, pp. 488–495.

[6] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal
of Machine Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[7] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolu-
tional neural networks for graphs,” in ICML, 2016, pp. 2014–2023.

[8] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y.
Liu, and S. Jaiswal, “Graph2vec: Learning distributed represen-
tations of graphs,” CoRR, vol. abs/1707.05005, 2017. arXiv: 1707.
05005.

[9] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categoriza-
tion as a graph classification problem,” in ACL-IJCNLP, 2015,
pp. 1702–1712.

[10] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and
J. Huang, “Graph representation learning via graphical mutual
information maximization,” in Proceedings of The Web Conference
2020, 2020, pp. 259–270.

[11] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph:
Unsupervised and semi-supervised graph-level representation
learning via mutual information maximization,” ICLR, 2020.

[12] R. Renner and U. Maurer, “About the mutual (conditional)
information.”

[13] L. Paninski, “Estimation of entropy and mutual information,”
Neural computation, vol. 15, no. 6, pp. 1191–1253, 2003.

[14] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” ICLR, 2019.

[15] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” in Advances in neural information processing systems,
2018, pp. 4800–4810.

https://arxiv.org/abs/1707.05005
https://arxiv.org/abs/1707.05005

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[16] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang,
“Semi-supervised graph classification: A hierarchical graph per-
spective,” in The World Wide Web Conference (WWW), 2019,
972–982.

[17] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” Pro-
ceedings of the 36th International Conference on Machine Learning
(ICML), 2019.

[18] J. Baek, M. Kang, and S. J. Hwang, “Accurate learning of graph
representations with graph multiset pooling,” in International
Conference on Learning Representations, 2021.

[19] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering
with graph neural networks for graph pooling,” in Proceedings of
the 37th international conference on Machine learning, ACM, 2020,
pp. 2729–2738.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[21] L. K. McDowell, K. M. Gupta, and D. W. Aha, “Cautious infer-
ence in collective classification,” in AAAI, 2007, pp. 596–601.

[22] M. Bilgic, L. Mihalkova, and L. Getoor, “Active learning for
networked data,” in ICML, 2010, pp. 79–86.

[23] Y. Guo and R. Greiner, “Optimistic active-learning using mutual
information.,” in IJCAI, vol. 7, 2007, pp. 823–829.

[24] Y. Chen and A. Krause, “Near-optimal batch mode active learn-
ing and adaptive submodular optimization,” in International
Conference on Machine Learning, PMLR, 2013, pp. 160–168.

[25] Y. Chen, S. H. Hassani, A. Karbasi, and A. Krause, “Sequential
information maximization: When is greedy near-optimal?” In
Conference on Learning Theory, PMLR, 2015, pp. 338–363.

[26] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Au-
tomating the construction of internet portals with machine learn-
ing,” Information Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[27] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, pp. 440–442, 1998.

[28] P. Erdős and A Rényi, “On the evolution of random graphs,”
Publ. Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[29] M. Herbster and M. Pontil, “Prediction on a graph with a
perceptron,” in NIPS, 2007, pp. 577–584.

[30] B. Bollobás and O. M. Riordan, “Mathematical results on scale-
free random graphs,” Handbook of graphs and networks: from the
genome to the internet, pp. 1–34, 2003.

[31] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[32] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf,
“Support vector machines,” IEEE Intelligent Systems and their
Applications, vol. 13, no. 4, pp. 18–28, 1998.

[33] Y. Wang, Y. Min, X. Chen, and J. Wu, “Multi-view graph con-
trastive representation learning for drug-drug interaction predic-
tion,” in The World Wide Web Conference, 2021.

[34] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language
model for scientific text,” arXiv preprint arXiv:1903.10676, 2019.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-
training of deep bidirectional transformers for language understanding,
2019. arXiv: 1810.04805 [cs.CL].

[36] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in ICML, 2016,
pp. 40–48.

[37] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in KDD, 2014, pp. 701–710.

[38] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning
for networks,” in KDD, 2016, pp. 855–864.

[39] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in
KDD, 2015, pp. 1365–1374.

[40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NIPS, 2013, pp. 3111–3119.

[41] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in NIPS, 2016, pp. 3844–3852.

[42] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[43] Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J.
Liang, “Fine-tuning convolutional neural networks for biomedi-
cal image analysis: Actively and incrementally,” in CVPR, 2017,
pp. 4761–4772.

Jia Li received the PhD degree in Department of
Systems Engineering and Engineering Manage-
ment at The Chinese University of Hong Kong in
2021. Currently, he is an assistant professor with
the Data Science and Analytics Thrust, Informa-
tion Hub, The Hong Kong University of Science
and Technology. His research interests include
machine learning, data mining and deep graph
learning.

Yongfeng Huang is preparing to pursue Ph.D.
Degree in the The Hong Kong University of Sci-
ence and Technology. Previously, he received
master degree in Tsinghua University. His re-
search interests include natural language pro-
cessing and deep graph learning.

Heng Chang is currently pursuing a Ph.D. De-
gree in the Tsinghua-Berkeley Shenzhen Insti-
tute at Tsinghua University. He received his B.S.
from the Department of Electronic Engineering,
Tsinghua University in 2017. His research in-
terests focus on graph representation learning
and machine learning on graph data, especially
in the development of efficient graph learning
models, and the explanation and robustness of
graph neural networks. He has published sev-
eral papers in prestigious conferences including

NeurIPS, AAAI, CIKM, ICLR-W, KDD-W, etc.

Yu Rong is a senior researcher of Machine
Learning Center in Tencent AI Lab. He received
the Ph.D. degree from The Chinese University of
Hong Kong in 2016. He joined Tencent AI Lab in
June 2017. His main research interests include
social network analysis, graph neural networks,
and large-scale graph systems. In Tencent AI
Lab, he is working on building the large-scale
graph learning framework and applying the deep
graph learning model to various applications,
such as ADMET prediction and malicious detec-

tion. He has published several papers on data mining, machine learning
top conferences, including the Proceedings of KDD, WWW, NeurIPS,
ICLR, CVPR, ICCV, etc.

https://arxiv.org/abs/1810.04805

	Introduction
	Problem Definition
	Methodology
	Problem Formulation
	Analysis of HGMI
	Design of Classifiers
	Graph instance representation
	Hierarchical graph representation

	Maximization of HGMI
	The Proposed SEAL-CI Model
	How to utilize t?

	The Proposed SEAL-AI Model
	Complexity Analysis

	EXPERIMENTS
	Synthetic Data
	Synthetic Data Generation
	Visualization
	Baselines and Metrics
	Results
	Influence of the number of labeled training instances

	Text Data
	Data Description
	Baselines and Metrics
	Results
	Discussion

	Social Network Data
	Data Description
	Baselines and Metrics
	Results
	Visualization
	Discussion

	Related Work
	CONCLUSION
	Biographies
	Jia Li
	Yongfeng Huang
	Heng Chang
	Yu Rong

