
Towards Expectation-Maximization by SQL in
RDBMS

Kangfei Zhao1, Jeffrey Xu Yu1, Yu Rong2, Ming Liao1, and Junzhou Huang3

1 The Chinese University of Hong Kong, Hong Kong S.A.R.,
{kfzhao, yu, mliao}@se.cuhk.edu.hk

2 Tencent AI Lab, China, yu.rong@hotmail.com
3 University of Texas at Arlington, United States, jzhuang@uta.edu

Abstract. Integrating machine learning techniques into RDBMSs is an
important task since many real applications require modeling (e.g., busi-
ness intelligence, strategic analysis) as well as querying data in RDBMSs.
Without integration, it needs to export the data from RDBMSs to build
a model using specialized ML toolkits and frameworks, and import the
model trained back to RDBMSs for further querying. Such a process is
not desirable since it is time-consuming and needs to repeat when data
is changed. In this paper, we provide an SQL solution that has the po-
tential to support different ML models in RDBMSs. We study how to
support unsupervised probabilistic modeling, that has a wide range of
applications in clustering, density estimation, and data summarization,
and focus on Expectation-Maximization (EM) algorithms, which is a
general technique for finding maximum likelihood estimators. To train
a model by EM, it needs to update the model parameters by an E-step
and an M-step in a while-loop iteratively until it converges to a level con-
troled by some thresholds or repeats a certain number of iterations. To
support EM in RDBMSs, we show our solutions to the matrix/vectors
representations in RDBMSs, the relational algebra operations to support
the linear algebra operations required by EM, parameters update by re-
lational algebra, and the support of a while-loop by SQL recursion. It is
important to note that the SQL’99 recursion cannot be used to handle
such a while-loop since the M-step is non-monotonic. In addition, with
a model trained by an EM algorithm, we further design an automatic
in-database model maintenance mechanism to maintain the model when
the underlying training data changes. We have conducted experimental
studies and will report our findings in this paper.

1 Introduction

Machine learning (ML) plays a leading role in predictive and estimation tasks. It
needs to fully explore how to build, utilize and manage ML models in RDBMSs
for the following reasons. First, data are stored in a database system. It is time-
consuming of exporting the data from the database system and then feeding it
into models, as well as importing the prediction and estimation results back to
the database system. Second, users need to build a model as to query data in

1

2 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

RDBMSs, and query their data by exploiting the analysis result of the models
trained as a part of a query seamlessly in RDBMSs. A flexible way is needed
to train/query an ML model together with data querying by a high-level query
language (e.g., SQL). Third, the data maintained in RDBMSs are supposed to
change dynamically. The analysis result of the ML models trained may be out-
dated, which requires repeating the process of exporting data from RDBMSs
followed by importing the model trained into RDBMSs. It needs to support ML
model update automatically in RDBMSs.

There are efforts to support ML in RDBMSs [12,21]. Model-based views [8,13]
are proposed to support classification and regression analysis in database sys-
tems. In brief, [8,13] use an ad-hoc create view statement to declare a classifica-
tion view. In this create view statement, [8] specifies the model by an as...fit...bases
clause, and the training data is fed by an SQL query, while [13] specifies a
model explicitly with using svm clause, where the features and labels are fed
by feature function and labels, respectively. Here, feature function takes database
attributes as the input features, and labels are database attributes. Although
these approaches provide an optimized implementation for classification models,
their create view statement is lack of generality and deviates from the regular
SQL syntax. In addition, the models supported are limited and implemented
in a low-level form in a database system, which makes it difficult for ordinary
database end-users to develop new models swiftly. In this work, we demonstrate
that our SQL recursive query can define a model-based view in an explicit fash-
ion to support many ML models. Different from [8,13], we focus on unsupervised
models in the application of in-database clustering, density estimation, and data
summarization.

The main contributions of this work are summarized below. First, we study
how to support Expectation-Maximization (EM) algorithms [15] in RDBMSs,
which is a general technique for finding maximum likelihood estimators. We
discuss how to represent data in RDBMSs, how to compute E-step and M-
step of EM using relational algebra operations, how to update parameters us-
ing relational algebra operations, and how to support its while-loop using SQL
recursive queries. Note that mutual recursion is needed for both E/M-step in
EM, where the E-step is to compute the conditional posterior probability by
Bayesian inference, which is a monotonic operation, whereas the M-step is to
compute and update the parameters of the model given a closed-form updating
formula, which can be non-monotonic. This fact suggests that SQL’99 recursion
cannot be used to support EM, since SQL’99 recursion (e.g., recursive with)
only supports stratified negation, and therefore cannot support non-monotonic
operations. We adopt the enhanced SQL recursion (e.g., with+) given in [28]
based on XY-stratified [4,26,27], to handle non-monotonic operations. We have
implemented our approach on top of PostgreSQL. We show how to train a batch
of classical statistical models [5], including Gaussian Mixture model, Bernoulli
Mixture model, the mixture of linear regression, Hidden Markov model, Mix-
tures of Experts. Third, given a model trained by EM, we further design an
automatic in-database model maintenance mechanism to maintain the model

Towards Expectation-Maximization by SQL in RDBMS 3

Algorithm 1: EM Algorithm for Mixture Gaussian Model

1: Initialize the means µ, covariances σ and mixing coefficients π;
2: Compute the initial log-likelihood L; i← 0;
3: while ∆L > ε or i < maxrecursion do
4: E-step: compute the responsibilities p(zik) based on current µ, σ and π by

Eq. (3);
5: M-step: re-estimate µ, σ and π by Eq. (4)-(6);
6: re-compute the log-likelihood L; i← i+ 1;
7: end while
8: return µ, σ, π;

when the underlying training data changes. Inspired by the online and incre-
mental EM algorithms [14,17], we show how to obtain the sufficient statistics of
the models to achieve the incremental even decremental model updating, rather
than re-training the model by all data. Our setting is different from the incre-
mental EM algorithms which are designed to accelerate the convergence of EM.
We maintain the model dynamically by the sufficient statistics of partial origi-
nal data in addition to the delta part. Fourth, we have conducted experimental
studies and will report our findings in this paper.

Organization In Section 2, we introduce the preliminaries including the EM
algorithm and the requirements to support it in database systems. We sketch
our solution in Section 3 and discuss EM training in Section 4. In Section 5, we
design a view update mechanism, which is facilitated by triggers. We conduct
extensive experimental studies in Section 6 and conclude the paper in Section 7.

2 Preliminaries

In this paper, we focus on unsupervised probabilistic modeling, which has broad
applications in clustering, density estimation and data summarization in database
and data mining area. Specifically, the unsupervised models aim to reveal the
relationship between the observed data and some latent variables by maximizing
the data likelihood. The expectation-maximization (EM) algorithm, first intro-
duced in [7], is a general technique for finding maximum likelihood estimators.
It has a solid statistical basis, robust to noisy data and its complexity is linear
in data size. Here, we use the Gaussian mixture model [5], a widely used model
in data mining, pattern recognition, and machine learning, as an example to
illustrate the EM algorithm and our approach throughout this paper.

Suppose we have an observed dataset X = {x1, x2, · · · , xn} of n data points
where xi ∈ Rd. Given N(x|µ,σ) is the probability density function of a Gaus-
sian distribution with mean µ ∈ Rd and covariance σ ∈ Rd×d, the density of
Gaussian mixture model is a simple linear super-position of K different Gaussian
components in the form of Eq. (1).

p(xi) =

K∑
k=1

πkN(xi|µk,σk) (1)

4 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

K π µ σ

1 π1 µ1 σ1

2 π2 µ2 σ2

(a) relation GMM

ID x

1 x1

2 x2

(b) relation X

ID K p

1 1 p(z11)
1 2 p(z12)
2 1 p(z21)
2 2 p(z22)

(c) relation R

ID x

1 [1.0, 2.0]
2 [3.0, 4.0]

(d) row-major
representation Xc

Table 1. The relation representations

Here, πk ∈ R is the mixing coefficient, i.e., the prior of a data point belonging
to component k and satisfies

∑K
i=1 πk = 1. To model this dataset X using a

mixture of Gaussians, the objective is to maximize the log-likelihood function in
Eq. (2).

lnp(X|π,µ,σ) =

n∑
i=1

ln[

K∑
k=1

πkN(xi|µk,σk)] (2)

Algorithm 1 sketches the EM algorithm for training the Gaussian Mixture Model.
First, in line 1-2, the means µk, covariances σk and the mixing coefficients πk of
K Gaussian distributions are initialized, and the initial value of the log-likelihood
(Eq. (2)) is computed. In the while loop of line 3-7, the Expectation-step (E-
step) and Maximization-step (M-step) are executed alternatively. In the E-step,
we compute the responsibilities, i.e., the conditional probability that xi belongs
to component k, denoted as p(zik) by fixing the parameters based on the Bayes
rule in Eq. (3).

p(zik) =
πkN(xi|µk,σk)∑K
j=1 πjN(xi|µj ,σj)

(3)

In the M-step, we re-estimate a new set of parameters using the current respon-
sibilities by maximizing the log-likelihood (Eq. (2)) as follows.

µnewk =
1

nk

n∑
i=1

p(zik)xi (4)

σnewk =
1

nk

n∑
i=1

p(zik)(xi − µnewk)(xi − µnewk)T (5)

πnewk =
nk
n

(6)

where nk =
∑n
i=1 p(zik). At the end of each iteration, the new value of log-

likelihood is evaluated and used for checking convergence. The algorithm ends
when the log-likelihood converges or a given iteration time is reached. In RDBMS,
the learned model, namely the parameters of K components, can be persisted
in a relation of K rows as shown in Table 1(a). Suppose 1-dimensional dataset
X as Table 1(b) is given, the posterior probability of xi belongs to component
k can be computed as Table 1(c) and clustering can be conducted by assigning
xi to component with the maximum p(zik).

To fulfill the EM algorithm in database systems, there are several important
issues that need to be concerned, including (1) the representation and storage of
high dimensional data in the database, (2) the relation algebra operation used to

Towards Expectation-Maximization by SQL in RDBMS 5

perform linear algebra computation in EM, (3) the approach for iterative param-
eter updating, (4) the way to express and control the iteration of EM algorithm,
and (5) the mechanism to maintain the existing model when underlying data
evolves.

3 Our Solution

In this section, we give a complete solution to deal with above issues in applying
the EM algorithm and building model-based views inside RDBMS.

High Dimensional Representation. Regarding the issue of high dimensional
data, different from [20], we adopt the row-major representation, as shown in
Table 1(d), which is endorsed by allowing array/vector data type in the database.
With it, we can use the vector/matrix operations to support complicated linear
algebra computation in a concise SQL query.

Consider computing the means µ in the M-step (Eq. (4)) with the represen-
tation Xc, in Table 1(d). Suppose the responsibilities are in relation R(ID,K, p),
where ID, K and p are the identifier of data point, component, and the value of
p(zik). The relational algebra expression to compute Eq. (4) is shown in Eq. (7).

Mc ← ρ(K,mean)(KGsum(p·x)(R on
R.ID=Xc.ID

Xc)) (7)

It joins X and R on the ID attribute to compute p(zik) · xi using the operator ·
which denotes a scalar-vector multiplication. With the row-major representation
which nesting separate dimension attributes into one vector-type attribute, the
· operator for vector computation, Eq. (4) is expressed efficiently (Eq. (7)).

Relational Algebra to Linear Algebra. On the basis of array/vector data
type and the derived statistical function and linear algebra operations, the com-
plicated linear algebra computation can be expressed by basic relational algebra
operations (selection (σ), projection (Π), union (∪), Cartesian product (×), and
rename (ρ)), together with group-by & aggregation. Let V and E (E′) be the
relation representation of vector and matrix, such that V (ID, v) and E(F, T, e).
Here ID is the tuple identifier in V . F and T , standing for the two indices of
a matrix. [28] introduces two new operations to support the multiplication be-
tween a matrix and a vector (Eq. (8)) and between two matrices (Eq. (9)) in
their relation representation.

E
⊕(�)
on

T=ID
V = FG⊕(�)(E on

T=ID
V) (8)

E
⊕(�)
on

E.T=E′.F
E′ = E.F,E′.TG⊕(�)(E on

E.T=E′.F
E′) (9)

The matrix-vector multiplication (Eq. (8)) consists of two steps. The first step is
computing v� e between a tuple in E and a tuple in V under the join condition
E.T = V.ID. The second step is aggregating all the � results by the operation

6 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

with R as
select · · · from R1,j , · · · computed by · · · (Q1)
union by update
select · · · from R2,j , · · · computed by · · · (Q2)

Fig. 1. The general form of the enhanced recursive with

of ⊕ for every group by grouping-by the attribute E.F . Similarly, the matrix-
matrix multiplication (Eq. (9)) is done in two steps. The first step computes �
between a tuple in E and a tuple in E′ under the join condition E.T = E′.F . The
second step aggregates all the � results by the operation of ⊕ for every group-
by grouping by the attributes E.F and E′.T . The formula of re-estimating the
means µ (Eq. (4)) is a matrix-vector multiplication if data is 1-dimensional or a
matrix-matrix multiplication otherwise. When high dimensional data is nested
as the row-major representation (Table 1(d)), the matrix-matrix multiplication
is reduced to matrix-vector multiplication, as shown in Eq. (7).

Re-estimating the covariance/standard deviation σ (Eq. (5)) involves the
element-wise matrix multiplication if data is 1-dimensional or a tensor-matrix
multiplication otherwise. The element-wise matrix multiplication can be ex-
pressed by joining two matrices on their two indices to compute E.e � E′.e.
An extra aggregation is required to aggregate on each component k as shown in
Eq. (10).

E
⊕(�)
on

E.F=E′.F
E.T=E′.T

E′ = E.FG⊕(�)(E on
E.F=E′.F
E.T=E′.T

E′) (10)

Similarly, when � and ⊕ are vector operation and vector aggregation, Eq. (10)
is reduced to high dimensional tensor-matrix multiplication.

Value Updating. We need to deal with parameter update when training the
model in multiple iterations. We use union by update, denoted as], defined
in [28] (Eq. (11)) to address value update.

R]A S = (R− (R n
R.A=S.A

S)) ∪ S (11)

Suppose tr is a tuple in R and ts is a tuple in S. The union by update updates
tr by ts if tr and ts are identical by some attributes A. If ts does not match any
tr, ts is merged into the resulting relation. We use] to update the relation of
parameters in Table 1(a).

Iterative Evaluation. RDBMSs have provided the functionality to support re-
cursive queries, based on SQL’99 [11,16], using the with clause in SQL. This with
clause restricts the recursion to be a stratified program, where non-monotonic
operation (e.g.,]) is not allowed. To support iterative model update, we fol-
low [28], which proves] (union by update) leads to a fixpoint in the enhanced
recursive SQL queries by XY-stratification. We prove that the vector/matrix
data type, introduced in this paper, can be used in XY-stratification. We omit
the details due to the limited space.

The general syntax of the enhanced recursive with is sketched in Fig. 1. It
allows union by update to union the result of initial query Q1 and recursive query

Towards Expectation-Maximization by SQL in RDBMS 7

Q2. Here, the computed by statement in the enhanced with allows users to specify
how a relation Ri,j is computed by a sequence of queries. The queries wrapped
in computed by must be non-recursive.

4 The EM Training

We show the details of supporting the model-based view using SQL. First, we
present the relational algebra expressions needed followed by the enhanced re-
cursive query. Second, we introduce the queries for model inference.

Parameter Estimation: For simplicity, here we consider the training data
point xi is 1-dimensional scalar. It is natural to extend the query to high dimen-
sional input data when matrix/vector data type and functions are supported
by the database system. We represent the input data by a relation X(ID, x),
where ID is the tuple identifier for data point xi and x is a numeric value.
The model-based view, which is persisted in the relation GMM(K, pie, mean,
cov), where K is the identifier of the k-th component, and ‘pie’, ‘mean’, and
‘cov’ denote the corresponding parameters, i.e., mixing coefficients, means and
covariances (standard deviations), respectively. The relation representations are
shown in Table 1. The following relational algebra expressions describe the E-
step (Eq. (12)), M-step (Eq. (13)-(16)), and parameter updating (Eq. (17)) in
one iteration.

R← ρ(ID,K,p)Π(ID,K,f)(GMM ×X) (12)

N ← ρ(K,pie)(R
sum(p)
on

R.ID=X.ID
X) (13)

M ← ρ(K,mean)(R
sum(p∗x)/sum(p)

on
R.ID=X.ID

X) (14)

T ← ΠID,K,pow(x−mean)(X ×N) (15)

C ← ρ(K,cov)KGsum(p∗t)(T on
R.ID=T.ID
R.K=T.K

R) (16)

GMM ← ρ(K,pie,mean,cov)(N on
N.K=M.K

M on
M.K=C.K

C) (17)

In Eq. (12), by performing a Cartesian product of GMM and X, each data
point is associated with the parameters of each component. The responsibilities
are evaluated by applying an analytical function f to compute the normalized
probability density (Eq. (3)) for each tuple, which is the E-step. The resulting
relation R(ID,K, p) is shown in Fig. 1(c). For the M-step, the mixing coefficients
‘pie’ (Eq. (13)), the means ‘mean’ (Eq. (14)) and the covariances ‘cov’ (Eq. (15)-
(16)) are re-estimated based on their update formulas in Eq. (4)-(6), respectively.
In the end, in Eq. (17), the temporary relations N , M and C are joined on
attribute K to merge the parameters. The result is assigned to the recursive
relation GMM.

Fig. 2 shows the enhanced with query to support Gaussian Mixture Model
by EM algorithm. The recursive relation GMM specifies the parameters of k

8 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

1. with
2. GMM(K, pie, mean, cov) as (
3. (select K, pie, mean, cov from INIT PARA)
4. union by update K
5. (select N.K, pie/n, mean, sqrt (cov/pie)
6. from N , C where N.K = C.K
7. computed by
8. R(ID, K, p) as select ID, k, norm(x, mean, cov) * pie /
9. (sum(norm(x, mean, cov) * pie) over (partition by ID))
10. from GMM, X
11. N(K, pie, mean) as select K, sum(p), sum(p * x) / sum(p)
12. from R, X where R.ID = X.ID
13. group by K
14. C(K, cov) as select R.K, sum(p * T .val) from
15. (select ID, K, pow(x-mean) as val from X, N) as T , R
16. where T.ID = R.ID and T.K = R.K
17. group by R.K)
18. maxrecursion 10)
19. select * from GMM

Fig. 2. The enhanced recursive SQL for Gaussian Mixtures

Gaussian distributions. In line 3, the initial query loads the initial parameters
from relation INI PARA. The new parameters are selected by the recursive
query (line 5-6) evaluated by the computed by statement and update the recursive
relation by union by update w.r.t. the component index K. It wraps the queries
to compute E-step and M-step of one iteration EM.

We elaborate on the queries in the computed by statement (line 8-17). Specif-
ically, the query in line 8-10 performs the E-step, as the relational algebra in
Eq. (12). Here, norm is the Gaussian (Normal) probability density function of
data point x given the mean and covariance as input. We can use the window
function, introduced in SQL’03 to compute the responsibility by Bayes rule in
Eq. (3). In line 9, sum() over (partition by()) is the window function performing
calculation across a set of rows that are related to the current row. As it does not
group rows, where each row retains its separate identity, many RDBMSs allow to
use it in the recursive query, e.g., PostgreSQL and Oracle. The window function
partitions rows of the Cartesian product results in partitions of the same ID
and computes the denominator of Eq. (3). In line 11-13, the query computes the
means (Eq. (4)) and the mixing coefficients together by a matrix-matrix multi-
plication due to their common join of R and X. Then, line 14-17 computes the
covariances of Eq. (5). First, we compute the square of xi − µk for each xi and
k, which requires a Cartesian product of N and R (Eq. (15)). Second, the value
is weighted by the responsibility and aggregated as specified in Eq. (16). The
new parameters in the temporary relation N and C will be merged by joining on
the component index K in line 6. The depth of the recursion can be controlled
by maxrecursion clause, adapted from SQL Server [2]. The maxrecursion clause
can effectively prevent infinite recursion caused by infinite fix point, e.g., ‘with
R(n) as ((select values(0)) union all (select n+1 from R))’ , a legal SQL’99
recursion.

Model Inference: Once the model is trained by the recursive query in Fig. 2,
it can be materialized in a view for online inference. In the phase of inference,
users can query the view by SQL to perform clustering, classification and density
estimation. Given a batch of data in relation X and a view GMM computed by

Towards Expectation-Maximization by SQL in RDBMS 9

Fig. 2, the query below computes the posterior probability that the component
K generated the data with index ID. The query is similar to computing the
E-step (Eq. (3)) in line 5-7 of Fig. 2.

create table R as select ID, K,
norm(x, mean, cov) * pie / (sum(norm(x, mean, cov) * pie)
over (partition by ID)) as p from GMM, X

Based on relation R(ID,K, p) above, we can further assign the data into K
clusters, where xi is assigned to cluster k if the posterior probability p(zik) is
the maximum among the {p(zi1), · · · , p(ziK)}. The query below creates a relation
CLU(ID, K) to persist the clustering result where ID and K are the index of
the data point and its assigned cluster, respectively. It first finds the maximum
p(zik) for each data point by a subquery on relation R. The result is renamed
as T and is joined with R on the condition of R.ID = T.ID and R.p = T.p to
find the corresponding k.

create table CLU as select ID, K from R,
(select ID, max (p) as p from R group by ID) as T ,
where R.ID = T.ID and R.p = T.p

It is worth noting that both of the queries above only access the data exactly
once. Thereby, it is possible to perform the inference on-the-fly and only for
interested data. Besides density estimation and clustering, result evaluation, e.g.,
computing the purity, normalized mutual information (NMI) and Rand Index
can be conducted in the database by SQL queries.

5 Model Maintenance

In this section, we investigate the automatic model/view updating. When the
underlying data X changes, a straightforward way is to re-estimate the model
over the updated data. However, when only a small portion of the training data
are updated, the changes of the corresponding model are slight, it is inefficient
to re-estimate the model on-the-fly. Hence, a natural idea arises that whether we
can update the existing model by exploring the “incremental variant” of the EM
algorithm. And this variant can be maintained by the newly arriving data and
a small portion of data extracted from the original dataset. As the statistical
model trained by an SQL query can be represented by its sufficient statistics,
the model is updated by maintaining the model and sufficient statistics.

Maintaining Sufficient Statistics: The sufficient statistic is a function of data
X that contains all of the information relevant to estimate the model parameters.
As the model is updated, the statistics of data is also updated followed by
the changing of the posterior probability p(zik). This process repeats until the
statistics converge. We elaborate on the sufficient statistics updating rules below.

10 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

Suppose the training dataset of model θ is {x1, x2, · · · , xn}. Let s be the
sufficient statistics of θ, based on the Factorization Theorem [10], we can obtain

s =

n∑
i=1

∑
z

p(z|xi,θ)φ(xi,z) (18)

where z is the unobserved variable, φ denotes the mapping function from an
instance (xi, z) to the sufficient statistics contributed by xi. The inserted data is
{xn+1, xn+2, · · · , xm}. Let the model for overall data {x1, · · · , xn, xn+1, · · · , xm}
be θ̃ and the corresponding sufficient statistics be s̃. The difference of s̃ − s,
denoted as ∆s is

∆s =

n+m∑
i=1

∑
z

p(z|xi, θ̃)φ(xi, z)−
n∑
i=1

∑
z

p(z|xi,θ)φ(xi, z)

=

n+m∑
i=1

∑
z

[p(z|xi, θ̃)− p(z|xi,θ)]φ(xi, z) (19)

+

m∑
i=n+1

∑
z

p(z|xi,θ)φ(xi, z) (20)

According to above equations, we observe that the delta part of the sufficient
statistics ∆s consists of two parts: (1) changes of the sufficient statistics for the
overall data points {x1, x2 · · ·xm} in Eq. (19), and (2) the additional sufficient
statistics for the newly inserted data points {xn+1, · · ·xm} in Eq. (20). Consider

to retrain a new model θ̃ over {x1, x2, · · · , xm} in T iterations by taking θ as

the initial parameter, i.e., θ(0) = θ and θ(T) = θ̃. We have

∆s =

n+m∑
i=1

∑
z

[p(z|xi,θ(T))− p(z|xi,θ(0))]φ(xi, z) (21)

+

m∑
i=n+1

∑
z

p(z|xi,θ(0))φ(xi, z) (22)

=

T∑
t=1

n+m∑
i=1

∑
z

[p(z|xi,θ(t))− p(z|xi,θ(t−1))]φ(xi, z) (23)

+

m∑
i=n+1

∑
z

p(z|xi,θ(0))φ(xi, z) (24)

Above equations indict how to compute ∆s. For the inserted data {xn+1, · · ·xm},
the delta can be directly computed by evaluating the original model θ(0) as
Eq. (24), while for original data, the delta can be computed by updating the

model θ(t) iteratively using all the data {x1, x2 · · ·xm} as Eq. (23). Since most
of the computational cost is on the iteration of Eq. (23), we approximate the
computation. First, we use the stochastic approximation algorithm, where the
parameters are updated after the sufficient statistics of each new data point xi is

Towards Expectation-Maximization by SQL in RDBMS 11

1. create trigger T1 before insert on X
2. for each statement
3. execute procedure DATA SELECTION

4. create trigger T2 before insert on X
5. for each row
6. execute procedure DATA INSERTION

7. create trigger T3 after insert on X
8. for each statement
9. execute procedure MODEL UPDATE

Fig. 3. The triggers for incremental update

computed, instead of the full batch dataset [14,18,22]. The second is discarding
the data points which are not likely to change their cluster in the future, as the
scaling clustering algorithms adopt for speedup [6]. We discuss our strategy of
selecting partial original data in {x1, x2, · · · , xn} for model update. There is a
tradeoff between the accuracy of the model and the updating cost. We have two
strategies: a distance-based and a density-based strategy. For the distance-based
strategy, we use Mahalanobis distance [9] to measure the distance between a
data point and a distribution. For each data xi, we compute the Mahalanobis
distance, Dk(xi), to the k-th component with mean µk and covariance σk.

Dk(xi) =
√

(xi − µk)Tσ−1
k (xi − µk) (25)

We can filter the data within a given thresholding radius with any component.
Another density-based measurement is the entropy of the posterior probability
for data xi as in Eq. (26), where p(zik) is evaluated by parameter θ(0). The
larger the entropy, the lower the possibility of assigning xi to any one of the
components.

E(xi) = −
K∑

k=1

p(zik)ln p(zik) (26)

Similarly, considering deletingm data points {xn−m+1, · · ·xn} from {x1, x2 · · ·xn},
the difference of the sufficient statistics, ∆s is

∆s =

T∑
t=1

n−m∑
i=1

∑
z

[p(z|xi,θ(t))− p(z|xi,θ(t−1))]φ(xi, z) (27)

−
n∑

i=n−m+1

∑
z

p(z|xi,θ(0))φ(xi, z)

A Trigger-based Implementation: In RDBMSs, the automatic model up-
dating mechanism is enabled by triggers built on the relation of the input data.
There are three triggers built on the relation of training data X, whose defini-
tions are shown in Fig. 3. Before executing the insertion operation, two triggers
T1 (line 1-3 in Fig. 3) and T2 (line 4-6 in Fig. 3) prepare the data for model

12 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

updating in a temporary relation X ′. Here, T1 performs on each row to select a
subset from original data in {x1, x2, · · · , xn} based on a selection criterion. Addi-
tionally, T2 inserts all the newly arrived data {x1+n, x2, · · · , xm} to relation X ′.
After the data preparation finished, another trigger T3 (line 7-9 in Fig. 3) will
call a PSM to compute the ∆s by X ′. In the PSM, first, the delta of the newly
inserted data (Eq. (23)) is computed to reinitialize the parameters of the model.
Then, T iterations of scanning relation X ′ is performed. Where in each itera-
tion. X ′ is randomly shuffled and each data point is used to update the sufficient
statistics it contributes as well as the model instantly. It is worth mentioning
that the data selection in trigger T1 can be performed offline, i.e., persisting a
subset of training data with a fixed budget size for model updating in the future.
In addition, the sufficient statistics for original model θ0 can be precomputed.
Those will improve the efficiency of online model maintenance significantly. The
actions of these triggers are transparent to the database users.

6 Experimental Studies

In this section, we present our experimental studies of supporting model-based
view training, inference, and maintenance in RDBMS. We conduct extensive
experiments to investigate the following: (a) to compare the performance of our
enhanced with and looping control by a host language, (b) to test the scalability
of the recursive queries for different models, and (c) to validate the efficiency of
our model maintenance mechanism.

Experimental Setup: We report our performance studies on a PC with In-
tel(R) Xeon(R) CPU E5-2697 v3 (2.60GHz) with 96GB RAM running Linux
CentOS 7.5 64 bit. We tested the enhanced recursive query on PostgreSQL
10.10 [3]. The statistical function and matrix/vector computation function are
supported by Apache MADlib 1.16 [12]. All the queries we tested are evaluated
in a single thread PostgreSQL instance.

with+ vs. Psycopg2: We compare the enhanced with, which translates the recur-
sive SQL query to SQL/PSM with the implementation of using a host language
to control the looping, which is adopted in previous EM implementation [20].
We implement the latter by Psycopg2 [1], a popular PostgreSQL adapter for
the python language. Regarding the EM algorithm, the E-step, M-step, and pa-
rameter updating are wrapped in a python for-loop, and executed by a cursor
alternatively. We compare the running time of these two implementations, i.e.,
enhanced with and Psycopg2 for training Gaussian Mixture Model by varying the
dimension d of data point (Fig. 4(b)), the scale of the training data n (Fig. 4(c)),
the number of components k (Fig. 4(a)) and the number of iterations (Fig. 4(d)).
The training data is evenly generated from 10 Gaussian distributions.

The evaluated time is the pure query execution time where the costs of
database connection, data loading and parameter initialization are excluded.
The experiments show that enhanced with outperforms Psycopg2 significantly,
not only for multiple iterators in Fig. 4(d) but also for per iteration in Fig. 4(b)-
4(a). For one thing, the implementation of Psycopg2 calls the database multiple

Towards Expectation-Maximization by SQL in RDBMS 13

0

1k

2k

3k

4 8 12 16 20

T
im

e
(s

)

k

(a) varying k

0

2k

4k

6k

8k

10 20 30 40 50

T
im

e
(s

)

d

enhanced with

(b) varying d

0

1k

2k

3k

1k 5k 10k 15k 20k

T
im

e
(s

)

n

Psycopg2

(c) varying n

0

1k

2k

3k

4k

5k

1 2 3 4 5

T
im

e
(s

)

Iterations

(d) varying # itera-
tions

Fig. 4. with+ vs. Psycopg2

0

1000

2000

3000

4000

5000

10 20 30 40 50

T
im

e
(s

)

d

GMM

(a) k = 8, n = 10000

0

300

600

900

1200

1500

1k 5k 10k 15k 20k

T
im

e
(s

)

n

MLR

(b) k = 8, d = 20

0

500

1000

1500

2000

4 8 12 16 20

T
im

e
(s

)

k

MOE

(c) d = 20, n = 10000

Fig. 5. Scalability Test

times per iteration, incurring much client-server communication and context
switch costs. For the other, the issued queries from client to server will be parsed,
optimized and planned on-the-fly. These are the general problems of calling SQL
queries by any host language. Meanwhile, we implement the hybrid strategy of
SQLEM [19] in PostgreSQL. For Gaussian Mixture model, one iteration for
10,000 data points with 10 dimensions fails to terminate within 1 hour. In their
implementation, 2k separate SQL queries evaluate the means and variances of k
components respectively, which is a performance bottleneck.

Experiments on synthetic data: We train Gaussian Mixture model (GMM) [5],
mixture of linear regression (MLR) [23] and a neural network model, mixture of
experts (MOE) [25] by evaluating SQL recursive queries in PostgreSQL. Given
the observed dataset as {(x1, y1), (x2, y2), · · · , (xn, yn)}, where xi ∈ Rd and
yi ∈ R, the MLR models the density of y given x as

p(yi|xi) =

K∑
k=1

πkN(yi|xTi βk,σk) (28)

And the MOE models the density of y given x as

p(yi|xi) =

K∑
k=1

gk(xi)N(yi|xTi βk,σk) (29)

where βk ∈ Rd is the parameters of a linear transformer, N is the probability
density function of a Gaussian given mean xTi βk ∈ R and standard deviation
σk ∈ R. In Eq. (29), gk(x) is called the gating function, given by computing the
softmax in Eq. (30) where θ ∈ Rd is a set of linear weights on xi.

gk(xi) =
exiθk∑K
j=1 e

xiθj

(30)

14 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

10

80

640

0 10 100 1000

T
im

e
(s

)

budget size

batch 10

(a) n = 100K

100

200

400

800

0 10 100 1000

T
im

e
(s

)

budget size

20 30

(b) n = 1M

1000

1600

2560

0 10 100 1000

T
im

e
(s

)

budget size

40 50

(c) n = 10M

Fig. 6. Insert maintenance

The intuition behind the gating functions is a set of ’soft’ learnable weights which
determine the mixture of K local models. We adopt the single loop EM algo-
rithm [24] to estimate the parameters of MOE, which uses least-square regression
to compute the gating network directly. For GMM, the training data is evenly
drawn from 10 Gaussian distributions. For MLR and MOE, the training data
is generated from 10 linear functions with Gaussian noise. The parameters of
the Gaussians and the linear functions are drawn from the uniform distribution
[0, 10]. And the initial parameters are also randomly drawn from [0, 10].

Fig. 5 displays the training time per iteration of the 3 models by varying the
data dimension d (Fig. 5(a)), the scale of the training data n (Fig. 5(b)) and the
number of clusters k (Fig. 5(c)). In general, for the 3 models, the training time
grows linearly as n and k increase, while the increment of data dimension d has
a more remarkable impact on the training time. When increasing n and k, the
size of intermediate relations, e.g., relation R for computing the responsibilities
in Eq. (12) grow linearly. Therefore the training cost grows linearly with regards
to n and k. However, in the 3 models, we need to deal with d × d dimensional
matrices in the M-step. For GMM, it needs to compute the probability density
of the multivariable Gaussians and reestimate the covariance matrices. For MLR
and MOE, they need to compute the matrix inversion and least square regression.
The training cost grows regarding the size of the matrix. The comparison shows
it is still hard to scale high-dimensional analysis in a traditional database system.
However, efficiency can be improved on a parallel/distributed platform and new
hardware.

Incremental Maintenance: Finally, we test the performance of our trigger-
based model updating mechanism. First, we train GMM for 1-dimensional data
generated from 2 Gaussian distributions. The original models are trained over
100k, 1M and 10M data points, respectively with 15 iterations. The overall train-
ing time is recorded as the ’batch’ mode training time, which is 54s, 501s and
4,841s respectively. After the model is trained and persisted. We insert 10, 20, 30,
40, 50 data points to the underlying data by varying the budget size of selected
data from 0 to 1,000.

Fig. 6 shows the insertion time w.r.t. the budget size of the selected data for
the 3 models. The insertion time is the collapsed time from the insert command
issuing to the transaction commit, including the cost of data selection with the
density-based strategy and computing initial sufficient statistics. As the number
of processed tuples increases, the insertion time grows linearly. Compare to the

Towards Expectation-Maximization by SQL in RDBMS 15

retraining cost, i.e., the batch training time, it is not always efficient to update
the existing model. The choice depends on two factors, the size of overall data
points, and the budget size plus insertion size, i.e., the numbers of data points
to be processed in the updating. The updating mechanism may not be efficient
and effective when the overall data size is small or there is a large volume of
insertion. That is because, for the batch training mode, computation of param-
eter evaluation dominates the cost. While for the model updating, since the
sufficient statistics and the model are updated when processing each data point,
the updating overhead becomes a main overhead. Meanwhile, we notice that the
collapsed time of data selection and computing initial sufficient statistics take
about 10s, 100s and 1,000s for data size of 100k, 1M and 10M, respectively.
Precomputing and persisting these results will benefit for a larger dataset.

7 Conclusion

Integrating machine learning techniques into database systems facilitates a wide
range of applications in industrial and academic fields. In this paper, we focus on
supporting EM algorithm in RDBMS. Different from the previous approach, our
approach wraps the E-step and M-step in an enhanced SQL recursive query to
reach an iterative fix point. We materialize the learned model as a database view
to query. Furthermore, to handle model updates, we propose an automatic view
updating mechanism by exploiting the incremental variant of the EM algorithm.
The extensive experiments we conducted show that our approach outperforms
the previous approach significantly, and can support multiple mixture models
by EM algorithm, as well as the efficiency of the incremental model update. The
SQL implementation can be migrated to parallel and distributed platforms, e.g.,
Hadoop and Spark, to deploy large scale machine learning applications. These
directions deserve future explorations.

Acknowledgement

This work is supported by the Research Grants Council of Hong Kong, China
under No. 14203618, No. 14202919 and No. 14205520.

References

1. http://initd.org/psycopg/docs/index.html.
2. Microsoft SQL documentation. https://docs.microsoft.com/en-us/sql/.
3. Postgresql. https://www.postgresql.org.
4. F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo. The deductive database system

LDL++. TPLP, 3(1), 2003.
5. C. M. Bishop. Pattern recognition and machine learning, 5th Edition. Information

science and statistics. Springer, 2007.
6. P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algorithms to large

databases. In Proc. of KDD’98, pages 9–15, 1998.

16 Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

7. A. P. Dempster. Maximum likelihood estimation from incomplete data via the em
algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 39:1–38, 1977.

8. A. Deshpande and S. Madden. Mauvedb: supporting model-based user views in
database systems. In Proc. of SIGMOD’06, pages 73–84, 2006.

9. R. O. Duda and P. E. Hart. Pattern classification and scene analysis. A Wiley-
Interscience publication. Wiley, 1973.

10. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York,
2 edition, 2001.

11. S. J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. Expressing recursive
queries in SQL. ISO-IEC JTC1/SC21 WG3 DBL MCI, (X3H2-96-075), 1996.

12. J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar. The madlib analytics library
or MAD skills, the SQL. PVLDB, 5(12):1700–1711, 2012.

13. M. L. Koc and C. Ré. Incrementally maintaining classification using an RDBMS.
PVLDB, 4(5):302–313, 2011.

14. P. Liang and D. Klein. Online EM for unsupervised models. In Proc. of NAACL’09,
pages 611–619, 2009.

15. G. McLachlan and T. Krishnan. The EM algorithm and extensions, volume 382.
John Wiley & Sons, 2007.

16. J. Melton and A. R. Simon. SQL: 1999: understanding relational language compo-
nents. Morgan Kaufmann, 2001.

17. R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremen-
tal, sparse, and other variants. In Learning in graphical models, pages 355–368.
Springer, 1998.

18. R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental,
sparse, and other variants. In Learning in Graphical Models, pages 355–368. 1998.

19. C. Ordonez. Optimization of linear recursive queries in SQL. IEEE Trans. Knowl.
Data Eng., 22(2), 2010.

20. C. Ordonez and P. Cereghini. SQLEM: fast clustering in SQL using the EM
algorithm. In Proc. of SIGMOD, pages 559–570, 2000.

21. P. Tamayo, C. Berger, M. M. Campos, J. Yarmus, B. L. Milenova, A. Mozes,
M. Taft, M. F. Hornick, R. Krishnan, S. Thomas, M. Kelly, D. Mukhin, R. Haber-
stroh, S. Stephens, and J. Myczkowsji. Oracle data mining - data mining in the
database environment. In The Data Mining and Knowledge Discovery Handbook.,
pages 1315–1329. 2005.

22. D. M. Titterington. Recursive parameter estimation using incomplete data. Jour-
nal of the Royal Statistical Society: Series B (Methodological), 46(2):257–267, 1984.

23. K. Viele and B. Tong. Modeling with mixtures of linear regressions. Statistics and
Computing, 12(4):315–330, 2002.

24. Y. Yang and J. Ma. A single loop EM algorithm for the mixture of experts architec-
ture. In Advances in Neural Networks - ISNN 2009, 6th International Symposium
on Neural Networks, ISNN 2009, Proceedings, Part II, pages 959–968, 2009.

25. S. E. Yuksel, J. N. Wilson, and P. D. Gader. Twenty years of mixture of experts.
IEEE Trans. Neural Netw. Learning Syst., 23(8):1177–1193, 2012.

26. C. Zaniolo, N. Arni, and K. Ong. Negation and aggregates in recursive rules: the
LDL++ approach. In Proc. of DOOD, 1993.

27. C. Zaniolo, S. Stefano, Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian,
and R. Zicari. Advanced database systems. Morgan Kaufmann, 1997.

28. K. Zhao and J. X. Yu. All-in-one: Graph processing in rdbmss revisited. In Proc.
of SIGMOD’17, 2017.

