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Motivation

• Learning informative molecular representation is fundamental for various downstream applications.

• Equivariant Graph networks (EGNs) are capable to model geometric graphs.

• SchNet, EGNN, PaiNN, TorchMD-Net, e.t.c.

• Community has provided large-scale molecule datasets with rich 3D conformations.

• GEOM,Molecule3D, PCQM4Mv2, e.t.c.

• Many self-supervised works have shown superiority in 2D graph learning
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• Learning informative molecular representation is fundamental for various downstream applications.

• Equivariant Graph networks (EGNs) are capable to model geometric graphs.

• SchNet, EGNN, PaiNN, TorchMD-Net, e.t.c.

• Community has provided large-scale molecule datasets with rich 3D conformations.

• GEOM,Molecule3D, PCQM4Mv2, e.t.c.

• Many self-supervised works have shown superiority in 2D graph learning.

• How about 3D pretraining?

3D tasks

3D models

3D datasets

2D pretraining

Ligand BindingMD Simulation



Related Works

• Equivariant Graph Neural Networks
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Image taken from Han et. al., 2022

⚫ Take EGNN as an example

⚫ E(3) Symmetry

Invariance 𝜑(𝑔 ⋅ 𝑿, 𝐻) = 𝜑(𝑿,𝐻)

Equivariance    𝜑(𝑔 ⋅ 𝑿,𝐻) = 𝑔 ⋅ 𝜑(𝑿,𝐻)

⚫ EGNN Message Passing & Aggregration



Related Works

• Self-supervised Molecular Pretraining

• 2D Pretraining

• Contrastive : Maximize MI between different views

• InfoGraph, GraphCL, JOAO, e.t.c.

• Generative : Reconstruct the graph components from different levels

• AttrMask, EdgePred, GPT-GNN, e.t.c.

• Predictive : Predict domain-specific labels created from the input graphs

• GROVER, e.t.c.

• 2D + 3D Pretraining

• GraphMVP

• 3D Infomax

• Does 2D pretraining methods align well with 3D models?

• Can we design 3D-aware tasks for 3D graphs?

Image taken from Liu et. al., 2022



Methods

• Overview

• Node-level : Equivariant Force Prediction (EFP)

• Graph-level : Invariant Noise-scale Prediction (INP)
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Methods

• Energy-based Molecular Modeling

• 3D graph : atom representations 𝐻 + inter-atomic connections ℰ + 3D positions 𝑿

• Obtain the node-level representation from the EGN model

• Predict the graph-level energy via a pooling operation

• Forces decrease the potential energy

𝐻′ = 𝜑EGN(𝑿,𝐻, ℰ)

𝐸(𝑿) = 𝜑proj(

𝑖=1

𝑁

ℎ𝑖
′)

𝑭(𝑿) = −∇𝑿 𝐸(𝑿)



Methods

• How to fit the predicted forces with reasonable “labels”?

• Assume the training conformers obey a Boltzmann energy distribution

• Forces are the negative gradients of the energy E over the coordinates X 
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Methods

• How to fit the predicted forces with reasonable “labels”?

• Assume the training conformers obey a Boltzmann energy distribution

• Forces are the negative gradients of the energy E over the coordinates X 

• Denoise score matching
Force “labels” !



Methods

• Doubly E(3)-invariance

• Our proposed Riemann-Gaussian distribution

• Let 𝒀 = 𝑿 − 𝜇(𝑿) be the zero-mean positions, the distance kernel is determined 
on the inner-product matrix to satisfy the doubly E(3)-invariance

• Targeted gradients 



Methods

• Final Equivariant Force Prediction loss

• 𝛼 = ( ෩𝒀෩𝒀⊤
𝐹
+ ෩𝒀𝒀⊤

𝐹
)/2 for numerical stability 



Methods

• Graph-level Invariant Noise-scale Prediction

• Discriminate the noise-scale given the original and perturbed graph

• Let 𝐻′, ෩𝐻′ be the output node representation of the original and perturbed graph

• The predicted probability is 𝒑 ∈ ℝ𝐿 = 𝜑𝑆𝑐𝑎𝑙𝑒(σ𝑖=1
𝑁 ℎ𝑖

′, σ𝑖=1
𝑁 ෨ℎ𝑖

′)

• INP loss



Methods

• Combination of the two tasks



Experiments

• Datasets

• Pretraining
• 100,000 conformations from GEOM
• Filter molecules in downstream task

• Downstream tasks
• QM9, 100k/18k/13k for training/validation/testing
• MD17, 9500/500/others for training/validation/testing

• Backbone model
• EGNN (main), SchNet, TorchMD-Net (analysis)

• Baselines
• 2D pretraining

• Contrastive : InfoGraph, GCC, GraphCL, JOAO, JOAOv2
• Generative : AttrMask, EdgePred, GPT-GNN

• 2D + 3D pretraining
• GraphMVP, 3D Infomax

• 3D pretraining
• ChemRL-GEM, PosPred



Experiments



Experiments

• Ablation studies on each components • Generalization on different backbones



Experiments

• Energy landscape visualization



Conclusion

• We propose a general 3D pretraining framework

• Node-level equivariant force prediction via energy-based modeling and Riemann-Gaussian 

distribution 

• Graph-level invariant noise-scale prediction as a surrogate task

• We conduct experiments on QM9 and MD17, showcasing the superiority of our method

• We provide necessary analyses and visualizations to verify and explain the effectiveness of our method



Thanks!


