Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs

Rui Jiao, Jiaqi Han, Wenbing Huang, Yu Rong, Yang Liu AAAI 2023

Motivation

• Learning informative molecular representation is fundamental for various downstream applications.

MD Simulation Ligand Binding

-
- Equivariant Graph networks (EGNs) are capable to model geometric graphs.
	- SchNet, EGNN, PaiNN, TorchMD-Net, e.t.c.
- Community has provided large-scale molecule datasets with rich 3D conformations.
	- GEOM,Molecule3D, PCQM4Mv2, e.t.c.
- Many self-supervised works have shown superiority in 2D graph learning

Motivation

• Learning informative molecular representation is fundamental for various downstream applications.

3D tasks

• Equivariant Graph networks (EGNs) are capable to model geometric graphs. • SchNet, EGNN, PaiNN, TorchMD-Net, e.t.c. • Community has provided large-scale molecule datasets with rich 3D conformations. • GEOM,Molecule3D, PCQM4Mv2, e.t.c. • Many self-supervised works have shown superiority in 2D graph learning. • How about 3D pretraining? 3D models 3D datasets 2D pretraining MD Simulation Ligand Binding

Related Works

- Equivariant Graph Neural Networks
	- Take EGNN as an example
	- \bullet E(3) Symmetry

Invariance $\varphi(g \cdot X, H) = \varphi(X, H)$

Equivariance $\varphi(g \cdot X, H) = g \cdot \varphi(X, H)$

● EGNN Message Passing & Aggregration

$$
m_{ij} = \varphi_m\left(h_i, h_j, \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2, e_{ij}\right),
$$

$$
\boldsymbol{x}'_i = \boldsymbol{x}_i + \sum_{j \neq i} \left(\boldsymbol{x}_i - \boldsymbol{x}_j\right) \varphi_x(m_{ij}),
$$

$$
h'_i = \varphi_h(h_i, \sum_{j \in \mathcal{N}(i)} m_{ij}),
$$

Image taken from Han et. al., 2022

Related Works

- Self-supervised Molecular Pretraining
- 2D Pretraining
	- Contrastive : Maximize MI between different views
		- InfoGraph, GraphCL, JOAO, e.t.c.
	- Generative : Reconstruct the graph components from different levels
		- AttrMask, EdgePred, GPT-GNN, e.t.c.
	- Predictive : Predict domain-specific labels created from the input graphs
		- GROVER, e.t.c.
- $2D + 3D$ Pretraining
	- GraphMVP
	- 3D Infomax

• Can we design 3D-aware tasks for 3D graphs?

• Overview

- Node-level : Equivariant Force Prediction (EFP)
- Graph-level : Invariant Noise-scale Prediction (INP)

- Energy-based Molecular Modeling
- 3D graph : atom representations $H +$ inter-atomic connections $\mathcal{E} +$ 3D positions X
- Obtain the node-level representation from the EGN model

 $H' = \varphi_{\text{EGN}}(X, H, \mathcal{E})$

• Predict the graph-level energy via a pooling operation

$$
\widehat{E}(\boldsymbol{X}) = \varphi_{\text{proj}}(\sum_{i=1}^{N} h'_i)
$$

• Forces decrease the potential energy

- How to fit the predicted forces with reasonable "labels"?
- Assume the training conformers obey a Boltzmann energy distribution

$$
p\left(\boldsymbol{X}\right) = \frac{1}{Z} \exp\left(-\frac{E(\boldsymbol{X})}{kT}\right)
$$

• Forces are the negative gradients of the energy *E* over the coordinates *X*

$$
\nabla_{\mathbf{X}} \log p(\mathbf{X}) \propto -\nabla_{\mathbf{X}} E(\mathbf{X}) \coloneqq \mathbf{F}.
$$

- How to fit the predicted forces with reasonable "labels"?
- Assume the training conformers obey a Boltzmann energy distribution

$$
p\left(\boldsymbol{X}\right) = \frac{1}{Z} \exp\left(-\frac{E(\boldsymbol{X})}{kT}\right)
$$

• Forces are the negative gradients of the energy *E* over the coordinates *X*

$$
\nabla_{\mathbf{X}} \log p(\mathbf{X}) \big| \propto -\nabla_{\mathbf{X}} E(\mathbf{X}) \coloneqq \mathbf{F}.
$$

Force "labels" !

$$
\mathcal{L}_\text{EFP} = \mathbb{E}_{\mathcal{G} \sim \mathbb{G}} \big[\|\hat{\bm{F}}(\bm{X}) - \nabla_{\bm{X}} \log p(\bm{X})\|_F^2\big]
$$

- How to fit the predicted forces with reasonable "labels"?
- Assume the training conformers obey a Boltzmann energy distribution

$$
p\left(\boldsymbol{X}\right) = \frac{1}{Z} \exp\left(-\frac{E(\boldsymbol{X})}{kT}\right)
$$

• Forces are the negative gradients of the energy *E* over the coordinates *X*

$$
\nabla_{\mathbf{X}} \log p(\mathbf{X}) \bigg| \propto -\nabla_{\mathbf{X}} E(\mathbf{X}) \coloneqq \mathbf{F}.
$$

Force "labels" !

• Denoise score matching

$$
\mathcal{L}_{\text{EFP-DN}} = \mathbb{E}_{\mathcal{G} \sim \mathbb{G}, \tilde{\boldsymbol{X}} \sim p(\tilde{\boldsymbol{X}}|\boldsymbol{X})}\big[\|\hat{\boldsymbol{F}}(\tilde{\boldsymbol{X}}) - \nabla_{\tilde{\boldsymbol{X}}}\log p(\tilde{\boldsymbol{X}}\mid\boldsymbol{X})\|_F^2\big]
$$

• Doubly E(3)-invariance

$$
p(g_1 \cdot \tilde{\boldsymbol{X}} \mid g_2 \cdot \boldsymbol{X}) = p(\tilde{\boldsymbol{X}} \mid \boldsymbol{X}), \forall g_1, g_2 \in E(3)
$$

• Our proposed Riemann-Gaussian distribution

$$
p_{\sigma}(\tilde{\bm{X}}\mid\bm{X})=\mathrm{Rie}_{\sigma}(\tilde{\bm{X}}\mid\bm{X})\coloneqq\frac{1}{Z(\sigma)}\exp\left(-\frac{d^2(\tilde{\bm{X}},\bm{X})}{4\sigma^2}\right)
$$

- Let $Y = X \mu(X)$ be the zero-mean positions, the distance kernel is determined on the inner-product matrix to satisfy the doubly $E(3)$ -invariance $d(\boldsymbol{X}_1, \boldsymbol{X}_2) = ||\boldsymbol{Y}_1^\top \boldsymbol{Y}_1 - \boldsymbol{Y}_2^\top \boldsymbol{Y}_2||_F$
	-
- Targeted gradients

$$
\nabla_{\tilde{\boldsymbol{X}}}\log p_{\sigma}(\tilde{\boldsymbol{X}}|\boldsymbol{X})=-\frac{1}{\sigma^2}\big[(\tilde{\boldsymbol{Y}}\tilde{\boldsymbol{Y}}^\top)\tilde{\boldsymbol{Y}}-(\tilde{\boldsymbol{Y}}\boldsymbol{Y}^\top)\boldsymbol{Y}\big]
$$

• Final Equivariant Force Prediction loss

$$
\mathcal{L}_{\text{EFP-Final}} = \mathbb{E}_{\mathcal{G}\sim\mathbb{G},l\sim U(1,L),\tilde{\boldsymbol{X}}\sim p_{\sigma_l}(\tilde{\boldsymbol{X}}|\boldsymbol{X})} \\ \left[\sigma_l^2 \|\frac{1}{\sigma_l} \hat{\boldsymbol{F}}(\tilde{\boldsymbol{X}}) - \frac{1}{\alpha} \nabla_{\tilde{\boldsymbol{X}}} \log p_{\sigma_l}(\tilde{\boldsymbol{X}}|\boldsymbol{X})\|_F^2\right]
$$

• $\alpha = (||\widetilde{Y}\widetilde{Y}^{\top}$ \overline{F} $+$ $\|\widetilde{Y}Y^{\top}$ \overline{F})/2 for numerical stability

- Graph-level Invariant Noise-scale Prediction
- Discriminate the noise-scale given the original and perturbed graph
- Let H' , \widetilde{H}' be the output node representation of the original and perturbed graph
- The predicted probability is $p \in \mathbb{R}^L = \varphi_{\text{scale}}(\sum_{i=1}^N h'_i, \sum_{i=1}^N \tilde{h}'_i)$ $\binom{l}{i}$
- INP loss

$$
\mathcal{L}_{\text{INP}} = \mathbb{E}_{\mathcal{G} \sim \mathbb{G}, l \sim U(1, L), \tilde{\mathbf{X}} \sim p_{\sigma_l}(\tilde{\mathbf{X}} | \mathbf{X})} \left[\mathcal{L}_{\text{CE}} \left(\mathbb{I}[l], \mathbf{p} \right) \right]
$$

• Combination of the two tasks

$$
\mathcal{L} = \lambda_1 \mathcal{L}_{\text{EFP-Final}} + \lambda_2 \mathcal{L}_{\text{INP}}
$$

- Datasets
- Pretraining
	- 100,000 conformations from GEOM
	- Filter molecules in downstream task
- Downstream tasks
	- QM9, 100k/18k/13k for training/validation/testing
	- MD17, 9500/500/others for training/validation/testing
- Backbone model
	- EGNN (main), SchNet, TorchMD-Net (analysis)
- Baselines
	- 2D pretraining
		- Contrastive : InfoGraph, GCC, GraphCL, JOAO, JOAOv2
		- Generative : AttrMask, EdgePred, GPT-GNN
	- $2D + 3D$ pretraining
		- GraphMVP, 3D Infomax
	- 3D pretraining
		- ChemRL-GEM, PosPred

Table 1: MAE (lower is better) on MD17 force prediction. All methods share the same backbone as Base.

Table 2: MAE (lower is better) on QM9. All methods share the same backbone as Base.

	Proposed Components				Average MAE	
	EFP		INP Riemann Energy		Energy	Force
Base					0.1191	0.2086
Ours					0.0876	0.0968
INP only					0.0974	0.1350
EFP only					0.0905	0.1193
Gaussian				✓	0.0912	0.1060
Distance					0.0931	0.1292
Direct					0.0914	0.1267

Table 3: Ablation studies on MD17. ¹Denoising on distance.

• **Ablation studies on each components** • **Generalization on different backbones**

Figure 3: MAE on MD17 with different backbones.

• **Energy landscape visualization**

Figure 4: Energy landscape of different pretrained models.

Conclusion

- We propose a general 3D pretraining framework
	- Node-level equivariant force prediction via energy-based modeling and Riemann-Gaussian distribution
	- Graph-level invariant noise-scale prediction as a surrogate task
- We conduct experiments on QM9 and MD17, showcasing the superiority of our method
- We provide necessary analyses and visualizations to verify and explain the effectiveness of our method

