Equivariant Graph Hierarchy-Based Neural Networks

Jiaqi Han hanjq21@mails.tsinghua.edu.cn

February 17, 2022

Backgrounds

Reasoning about the relations and dynamics of interacting objects and physical systems is a vital topic in machine learning.

Challenges

In this work, we focus on the systems that exhibit **hierarchical** structure, *e.g.*, the constrained N-body systems (or dubbed M-complex), proteins.

Challenges:

- Satisfying the equivariance constraints.
- Identifying the hierarchical structure.
- Incorporating the above two recipes in one network.

Each input multi-body system is modeled as a graph \mathcal{G} consisting of N particles (nodes) \mathcal{V} and the interactions (edges) \mathcal{E} among them. For each node i, it is assigned with a feature tuple $(\mathbf{Z}_i^{(0)}, \mathbf{h}_i^{(0)})$, where the directional matrix $\mathbf{Z}_i^{(0)} \in \mathbb{R}^{n \times m}$ is composed of m n-dimension vectors, such as the concatenation of position $\mathbf{x}_i \in \mathbb{R}^3$ and velocity $\mathbf{v}_i \in \mathbb{R}^3$; $\mathbf{h}_i \in \mathbb{R}^c$ is the non-directional feature, such as the atom number in molecules. The edges are represented by an adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$. We henceforth abbreviate the entire information of a system, *i.e.*, $(\{\mathbf{Z}_i^{(0)}, \mathbf{h}_i^{(0)}\}_{i=1}^N, \mathbf{A})$ as the notation \mathcal{G}^{in} if necessary.

Equivariance and Invariance

Group equivariant and invariant

Given a set of transformations $T_g : \mathcal{V} \to \mathcal{V}$ for $g \in G$, a function ϕ is called *G*-equivariant if for every *g* there exists a transformation $S_g : \mathcal{Y} \to \mathcal{Y}$ such that for all $g \in G$, $v \in \mathcal{V}$,

$$S_g[\phi(\mathbf{v})] = \phi(T_g[\mathbf{v}])$$

Specifically, if $S_g = id$, then ϕ is *G*-invariant, where *id* is the identity transformation.

 ϕ should be equivariant to any translation/reflection/rotation of the input states. By saying equivariance, we imply

$$\phi(\{g \cdot \mathbf{Z}_{i}^{(0)}\}_{i=1}^{N}, \cdots) = g \cdot \phi(\{\mathbf{Z}_{i}^{(0)}\}_{i=1}^{N}, \cdots),$$

where $g \cdot Z_i^{(0)}$ conducts the orthogonal transformation as $RZ_i^{(0)}$ for both the position and velocity vectors and is additionally implemented as the translation $x_i + b$ for the position vector; the ellipsis denotes the input variables uninfluenced by g, including $h_i^{(0)}$ and A.

Hierarchical Learning in GNNs: DiffPool

 $A^{(l+1)}, Z^{(l+1)} = \text{DiffPool}(A^{(l)}, Z^{(l)})$ $Z^{(l+1)} = S^{(l)\top} Z^{(l)},$ $A^{(l+1)} = S^{(l)\top} A^{(l)} S^{(l)}.$

 $S^{(l)}$ is a GNN-parameterized assignment score matrix for the *l*-th layer.

Equivariant Matrix Message Passing (EMMP)

Given input features $\{(\mathbf{Z}_i, \mathbf{h}_i)\}_{i=1}^N$, EMMP performs information aggregation on the same graph to obtain the new features $\{(\mathbf{Z}'_i, \mathbf{h}'_i)\}_{i=1}^N$. The EMMP layer is undated by

$$\boldsymbol{H}_{ij} = \mathsf{MLP}\left(\hat{\boldsymbol{Z}}_{ij}^{\top} \hat{\boldsymbol{Z}}_{ij}, \boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right), \qquad (1$$

$$\boldsymbol{M}_{ij} = \hat{\boldsymbol{Z}}_{ij} \boldsymbol{H}_{ij}, \qquad (2$$

$$\boldsymbol{h}_{i}^{\prime} = \mathsf{MLP}(\boldsymbol{h}_{i}, \sum_{i \in \mathcal{N}(i)} \boldsymbol{H}_{ij}),$$
 (3)

$$\boldsymbol{Z}_{i}^{\prime} = \boldsymbol{Z}_{i} + \sum_{j \in \mathcal{N}(i)} \boldsymbol{M}_{ij}, \qquad (4)$$

where $\hat{Z}_{ij} = (Z_i - \bar{Z}, Z_j - \bar{Z})$ is a concatenation of the translated matrices on the edge *ij*. \bar{Z} is the mean of all nodes for the position vectors and zero for other vectors. EMMP is equivariant *w.r.t.* E(n).

E-Pool

The role of E-Pool is to coarsen the low-level system $\mathcal{G}^{\text{low}} = (\{(\boldsymbol{Z}_i^{\text{low}}, \boldsymbol{h}_i^{\text{low}})\}_{i=1}^N, \boldsymbol{A}^{\text{low}})$ into an abstract and high-level system $\mathcal{G}^{\text{high}} = (\{(\boldsymbol{Z}_i^{\text{high}}, \boldsymbol{h}_i^{\text{high}})\}_{i=1}^K, \boldsymbol{A}^{\text{high}})$ with fewer particles, K < N. We proceed the following equations:

$$\{\boldsymbol{Z}_{i}^{'},\boldsymbol{h}_{i}^{'}\}_{i}^{N} = \mathsf{EMMP}(\{\boldsymbol{Z}_{i}^{\mathsf{low}},\boldsymbol{h}_{i}^{\mathsf{low}}\}_{i}^{N},\boldsymbol{A}^{\mathsf{low}}),\tag{5}$$

$$\boldsymbol{s}_i = ext{SoftMax}(ext{MLP}(\boldsymbol{h}_i^{'})), ext{(6)}$$

$$Z_{j}^{\text{high}} = \frac{1}{\sum_{i=1}^{N} s_{ij}} \sum_{i=1}^{N} s_{ij} Z_{i}^{\prime}, \qquad (7)$$
$$\boldsymbol{h}_{j}^{\text{high}} = \frac{1}{\sum_{j=1}^{N} s_{ij}} \sum_{i=1}^{N} s_{ij} \boldsymbol{h}_{i}^{\text{low}}, \qquad (8)$$
$$\boldsymbol{A}^{\text{high}} = \boldsymbol{S}^{\top} \boldsymbol{A}^{\text{low}} \boldsymbol{S}, \qquad (9)$$

where the score matrix is given by $\boldsymbol{S} = [s_{ij}]_{N \times K}$, and \boldsymbol{s}_i is its *i*-th row.

E-UpPool

E-UpPool maps the information of the high-level system \mathcal{G}^{high} back to the original system space \mathcal{G}^{low} , leading to an output system \mathcal{G}^{out} . Particularly,

$$Z_{i}^{agg} = \sum_{j=1}^{K} s_{ij} Z_{j}^{high}, \qquad (10)$$
$$h_{i}^{agg} = \sum_{j=1}^{K} s_{ij} h_{j}^{high}, \qquad (11)$$
$$h_{i}^{out} = MLP\left(\hat{Z}_{i}^{\top} \hat{Z}_{i}, h_{i}^{low}, h_{i}^{agg}\right), \qquad (12)$$
$$Z_{i}^{out} = \hat{Z}_{i} h_{i}^{out}, \qquad (13)$$

where $\hat{Z}_i = [Z_i^{\text{low}} - \bar{Z}^{\text{low}}; Z_i^{\text{agg}} - \bar{Z}^{\text{agg}}]$ is the column-wise concatenation of the mean-translated low-level matrix Z_i^{low} and the high-level matrix Z_i^{agg} .

Overall Architecture

The training objective of EGHN is given by:

$$\mathcal{L} = \sum_{i=1}^{N} \|\boldsymbol{Z}_{i}^{\text{out}} - \boldsymbol{Z}_{i}^{\text{gt}}\|_{F}^{2} + \lambda \sum_{l=1}^{L} \|(\boldsymbol{S}^{(l)})^{\top} \boldsymbol{A}^{(l-2)} \boldsymbol{S}^{(l)} - \boldsymbol{I}\|_{F}^{2},$$

Table: Prediction error (×10⁻²) on various types of simulated datasets. The "Multiple System" contains J = 5 different systems. For each column, (M, N/M) indicates that each system contains M complexes of average size N/M. Results averaged across 3 runs. "OOM" denotes out of memory.

	Single System				Multiple Systems			
	(3, 3)	(5, 5)	(5, 10)	(10, 10)	(3, 3)	(5, 5)	(5, 10)	(10, 10)
Linear	$35.15{\scriptstyle \pm 0.01}$	$35.22{\scriptstyle\pm0.00}$	$30.14{\scriptstyle \pm 0.00}$	$31.44{\scriptstyle\pm0.01}$	$35.91{\scriptstyle\pm0.01}$	$35.29{\scriptstyle \pm 0.01}$	$30.88{\scriptstyle \pm 0.01}$	$32.49{\scriptstyle\pm0.01}$
TFN	$25.11{\scriptstyle \pm 0.15}$	$29.35{\scriptstyle \pm 0.17}$	$26.01{\scriptstyle \pm 0.22}$	OOM	$27.33{\scriptstyle \pm 0.21}$	$29.01{\scriptstyle \pm 0.13}$	$25.57{\scriptstyle\pm0.14}$	OOM
SE(3)-Tr.	$27.12{\scriptstyle \pm 0.26}$	$28.87{\scriptstyle\pm0.09}$	$24.48{\scriptstyle \pm 0.35}$	OOM	$28.14{\scriptstyle\pm0.16}$	$28.66{\scriptstyle \pm 0.10}$	$25.00{\scriptstyle \pm 0.28}$	OOM
GNN	$16.00{\scriptstyle \pm 0.11}$	$17.55{\scriptstyle \pm 0.19}$	$16.15{\scriptstyle \pm 0.08}$	$15.91{\scriptstyle \pm 0.15}$	$16.76{\scriptstyle \pm 0.13}$	$17.58{\scriptstyle \pm 0.11}$	$16.55{\scriptstyle \pm 0.21}$	$16.05{\scriptstyle \pm 0.16}$
RF	$14.20{\scriptstyle \pm 0.09}$	$18.37{\scriptstyle\pm0.12}$	$17.08{\scriptstyle \pm 0.03}$	$18.57{\scriptstyle\pm0.30}$	$15.17{\scriptstyle\pm0.10}$	$18.55{\scriptstyle \pm 0.12}$	$17.24{\scriptstyle\pm0.11}$	$19.34{\scriptstyle \pm 0.25}$
EGNN	$12.69{\scriptstyle \pm 0.19}$	$15.37{\scriptstyle\pm0.13}$	$15.12{\scriptstyle \pm 0.11}$	$14.64{\scriptstyle\pm0.27}$	$13.33{\scriptstyle \pm 0.12}$	$15.48{\scriptstyle \pm 0.16}$	$15.29{\scriptstyle \pm 0.12}$	$15.02{\scriptstyle \pm 0.18}$
EGHN	$11.58{\scriptstyle \pm 0.01}$	$14.42{\scriptstyle\pm0.08}$	$14.29{\scriptstyle \pm 0.40}$	$\textbf{13.09}{\scriptstyle \pm 0.66}$	$12.80{\scriptstyle \pm 0.56}$	$14.85{\scriptstyle\pm0.03}$	$14.50{\scriptstyle\pm0.08}$	$\textbf{13.11}{\scriptstyle \pm 0.92}$

Experiments: M-complex

Table: Prediction error ($\times 10^{-2}$) on the motion capture dataset. Results averaged across 3 runs.

	Subject #35 Walk	Subject #9 Run
GNN	36.1 ± 1.5	66.4 ±2.2
RF	$188.0\ \pm 1.9$	$521.3{\pm}2.3$
TFN	$32.0\ \pm 1.8$	$56.6\ \pm 1.7$
SE(3)-Tr.	$31.5\ \pm 2.1$	$61.2\ \pm 2.3$
EGNN	$28.7\ \pm 1.6$	$50.9\ \pm0.9$
GMN	$21.6\ \pm 1.5$	$44.1\ \pm 2.3$
EGHN	8.5 ±2.2	$\textbf{25.9} \pm 0.3$

Experiments: Motion Capture

Experiments: Protein MD

Figure: Visualization on the MDAnalysis dataset. *Left*: the prediction of EGNN. *Middle*: the prediction of EGHN. *Right*: the pooling results of EGHN with each color indicating a cluster. In the left and middle figure, ground truth in red, prediction for EGNN in blue, and prediction for EGHN in green.

Experiments: Protein MD

Figure: The prediction error of equivariant models on the protein molecular dynamics dataset.

The prediction error is computed as the MSE.