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Challenges

In this work, we focus on the
systems that exhibit hierarchical
structure, e.g., the constrained
N-body systems (or dubbed
M-complex), proteins.

Challenges:

• Satisfying the equivariance
constraints.

• Identifying the hierarchical
structure.

• Incorporating the above two
recipes in one network.

M-complex Protein
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Notations

Each input multi-body system is modeled as a graph G consisting of N particles
(nodes) V and the interactions (edges) E among them. For each node i , it is

assigned with a feature tuple (Z (0)
i ,h(0)

i ), where the directional matrix Z (0)
i ∈ Rn×m

is composed of m n-dimension vectors, such as the concatenation of position xi ∈ R3

and velocity vi ∈ R3; hi ∈ Rc is the non-directional feature, such as the atom
number in molecules. The edges are represented by an adjacency matrix A ∈ RN×N .
We henceforth abbreviate the entire information of a system, i.e.,

({Z (0)
i ,h(0)

i }Ni=1,A) as the notation G in if necessary.
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Equivariance and Invariance

Group equivariant and invariant

Given a set of transformations Tg : V → V for g ∈ G , a function ϕ is called G−equivariant if
for every g there exists a transformation Sg : Y → Y such that for all g ∈ G , v ∈ V,

Sg [ϕ(v)] = ϕ(Tg [v ])

Specifically, if Sg = id , then ϕ is G−invariant, where id is the identity transformation.
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Equivariance

ϕ should be equivariant to any translation/reflection/rotation of the input states. By
saying equivariance, we imply

ϕ({g · Z (0)
i }Ni=1, · · · ) = g · ϕ({Z (0)

i }Ni=1, · · · ),

where g · Z (0)
i conducts the orthogonal transformation as RZ (0)

i for both the position and
velocity vectors and is additionally implemented as the translation xi + b for the position

vector; the ellipsis denotes the input variables uninfluenced by g , including h(0)
i and A.
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Hierarchical Learning in GNNs: DiffPool

A(l+1),Z (l+1) = DiffPool(A(l),Z (l))

Z (l+1) = S(l)⊤Z (l),

A(l+1) = S(l)⊤A(l)S(l).

S(l) is a GNN-parameterized assignment score matrix for the l-th layer.
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Equivariant Matrix Message Passing (EMMP)

Given input features {(Zi ,hi )}Ni=1, EMMP performs information aggregation on the same
graph to obtain the new features {(Z ′

i ,h
′
i )}Ni=1. The EMMP layer is undated by

Hij = MLP
(
Ẑ⊤
ij Ẑij ,hi ,hj

)
, (1)

Mij = ẐijHij , (2)

h′
i = MLP(hi ,

∑
j∈N (i)

Hij), (3)

Z ′
i = Zi +

∑
j∈N (i)

Mij , (4)

where Ẑij = (Zi − Z̄ ,Zj − Z̄ ) is a concatenation of the translated matrices on the edge ij . Z̄
is the mean of all nodes for the position vectors and zero for other vectors.
EMMP is equivariant w.r.t. E(n).
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E-Pool

The role of E-Pool is to coarsen the low-level system G low = ({(Z low
i ,hlow

i )}Ni=1,A
low) into an

abstract and high-level system Ghigh = ({(Zhigh
i ,hhigh

i )}Ki=1,A
high) with fewer particles,

K < N. We proceed the following equations:

{Z ′
i ,h

′
i }Ni = EMMP({Z low

i ,hlow
i }Ni ,Alow), (5)

si = SoftMax(MLP(h
′
i )), (6)

Zhigh
j =

1∑N
i=1 sij

N∑
i=1

sijZ
′
i , (7)

hhigh
j =

1∑N
j=1 sij

N∑
i=1

sijhlow
i , (8)

Ahigh = S⊤AlowS , (9)

where the score matrix is given by S = [sij ]N×K , and si is its i-th row.
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E-UpPool

E-UpPool maps the information of the high-level system Ghigh back to the original system
space G low, leading to an output system Gout. Particularly,

Z agg
i =

K∑
j=1

sijZ
high
j , (10)

hagg
i =

K∑
j=1

sijh
high
j , (11)

hout
i = MLP

(
Ẑ⊤
i Ẑi ,hlow

i ,hagg
i

)
, (12)

Z out
i = Ẑihout

i , (13)

where Ẑi = [Z low
i − Z̄ low;Z agg

i − Z̄ agg] is the column-wise concatenation of the
mean-translated low-level matrix Z low

i and the high-level matrix Z agg
i .
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Overall Architecture

The training objective of EGHN is given by:

L =
N∑
i=1

∥Z out
i − Z gt

i ∥2F + λ

L∑
l=1

∥(S(l))⊤A(l−2)S(l) − I∥2F ,
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Experiments: M-complex

Table: Prediction error (×10−2) on various types of simulated datasets. The “Multiple System” contains J = 5
different systems. For each column, (M,N/M) indicates that each system contains M complexes of average
size N/M. Results averaged across 3 runs. “OOM” denotes out of memory.

Single System Multiple Systems
(3, 3) (5, 5) (5, 10) (10, 10) (3, 3) (5, 5) (5, 10) (10, 10)

Linear 35.15±0.01 35.22±0.00 30.14±0.00 31.44±0.01 35.91±0.01 35.29±0.01 30.88±0.01 32.49±0.01

TFN 25.11±0.15 29.35±0.17 26.01±0.22 OOM 27.33±0.21 29.01±0.13 25.57±0.14 OOM
SE(3)-Tr. 27.12±0.26 28.87±0.09 24.48±0.35 OOM 28.14±0.16 28.66±0.10 25.00±0.28 OOM
GNN 16.00±0.11 17.55±0.19 16.15±0.08 15.91±0.15 16.76±0.13 17.58±0.11 16.55±0.21 16.05±0.16

RF 14.20±0.09 18.37±0.12 17.08±0.03 18.57±0.30 15.17±0.10 18.55±0.12 17.24±0.11 19.34±0.25

EGNN 12.69±0.19 15.37±0.13 15.12±0.11 14.64±0.27 13.33±0.12 15.48±0.16 15.29±0.12 15.02±0.18

EGHN 11.58±0.01 14.42±0.08 14.29±0.40 13.09±0.66 12.80±0.56 14.85±0.03 14.50±0.08 13.11±0.92
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Experiments: M-complex
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Figure: Visualization on M-complex systems. Left: EGNN; Middle: EGHN; Right: clusters.
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Experiments: Motion Capture

Table: Prediction error (×10−2) on the motion capture dataset. Results averaged across 3 runs.

Subject #35 Subject #9
Walk Run

GNN 36.1 ±1.5 66.4 ±2.2

RF 188.0 ±1.9 521.3±2.3

TFN 32.0 ±1.8 56.6 ±1.7

SE(3)-Tr. 31.5 ±2.1 61.2 ±2.3

EGNN 28.7 ±1.6 50.9 ±0.9

GMN 21.6 ±1.5 44.1 ±2.3

EGHN 8.5 ±2.2 25.9 ±0.3
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Experiments: Motion Capture
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Figure: Visualization on Motion Capture. Left: EGNN; Middle: EGHN; Right: clusters.
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Experiments: Protein MD

Figure: Visualization on the MDAnalysis dataset. Left: the prediction of EGNN. Middle: the prediction of
EGHN. Right: the pooling results of EGHN with each color indicating a cluster. In the left and middle figure,
ground truth in red, prediction for EGNN in blue, and prediction for EGHN in green.
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Experiments: Protein MD
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Figure: The prediction error of equivariant models on the protein molecular dynamics dataset.

The prediction error is computed as the MSE.
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