Equivariant Graph Hierarchy-Based Neural Networks

Jiaqi Han hanjq21@mails.tsinghua.edu.cn

February 17, 2022

Backgrounds

Reasoning about the relations and dynamics of interacting objects and physical systems is a vital topic in machine learning.

Challenges

In this work, we focus on the systems that exhibit hierarchical structure, e.g., the constrained N-body systems (or dubbed M-complex), proteins.

Challenges:

- Satisfying the equivariance constraints.
- Identifying the hierarchical structure.
- Incorporating the above two structure.
Incorporating the above two
recipes in one network.

Each input multi-body system is modeled as a graph G consisting of N particles (nodes) V and the interactions (edges) $\mathcal E$ among them. For each node i, it is assigned with a feature tuple $(\boldsymbol{Z}^{(0)}_i)$ $\bm{h}_i^{(0)}, \bm{h}_i^{(0)}$ $\mathcal{Z}^{(0)}_i$), where the directional matrix $\boldsymbol{Z}^{(0)}_i \in \mathbb{R}^{n \times m}$ is composed of m n-dimension vectors, such as the concatenation of position $\textbf{\textit{x}}_i \in \mathbb{R}^3$ and velocity $\pmb{\nu}_i \in \mathbb{R}^3; \ \pmb{h}_i \in \mathbb{R}^\mathsf{c}$ is the non-directional feature, such as the atom number in molecules. The edges are represented by an adjacency matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}.$ We henceforth abbreviate the entire information of a system, *i.e.*, $(\{Z_i^{(0)}\}$ $\bm{h}_i^{(0)}, \bm{h}_i^{(0)}$ $\{S^{(0)}\}_{i=1}^N$, \boldsymbol{A}) as the notation \mathcal{G}^{in} if necessary.

Equivariance and Invariance

Group equivariant and invariant

Given a set of transformations $T_g : \mathcal{V} \to \mathcal{V}$ for $g \in G$, a function ϕ is called G-equivariant if for every g there exists a transformation $S_g : \mathcal{Y} \to \mathcal{Y}$ such that for all $g \in G, v \in \mathcal{V}$,

$$
S_g[\phi(v)] = \phi(\mathcal{T}_g[v])
$$

Specifically, if $S_g = id$, then ϕ is G-invariant, where id is the identity transformation.

 ϕ should be equivariant to any translation/reflection/rotation of the input states. By saying equivariance, we imply

$$
\phi(\{g \cdot Z_i^{(0)}\}_{i=1}^N, \cdots) = g \cdot \phi(\{Z_i^{(0)}\}_{i=1}^N, \cdots),
$$

where $g \cdot \boldsymbol{Z}_i^{(0)}$ $\bm{r}^{(0)}_i$ conducts the orthogonal transformation as $\bm{R} \bm{Z}^{(0)}_i$ for both the position and velocity vectors and is additionally implemented as the translation $x_i + b$ for the position vector; the ellipsis denotes the input variables uninfluenced by \bm{g} , including $\bm{h}^{(0)}_i$ $\theta_i^{(0)}$ and \boldsymbol{A} .

Hierarchical Learning in GNNs: DiffPool

 $\boldsymbol{A}^{(l+1)}, \boldsymbol{Z}^{(l+1)} = \text{DiffPool}(\boldsymbol{A}^{(l)}, \boldsymbol{Z}^{(l)})$ $Z^{(l+1)} = S^{(l)\top} Z^{(l)},$ $A^{(l+1)} = S^{(l)\top} A^{(l)} S^{(l)}.$

 $S^{(l)}$ is a GNN-parameterized assignment score matrix for the *I*-th layer.

Equivariant Matrix Message Passing (EMMP)

Given input features $\{(\textbf{\textit{Z}}_i, \textbf{\textit{h}}_i)\}_{i=1}^{N}$, EMMP performs information aggregation on the same graph to obtain the new features $\{(\textbf{\emph{Z}}'_i, \textbf{\emph{h}}'_i)\}_{i=1}^{N}$. The EMMP layer is undated by

$$
\boldsymbol{H}_{ij} = \text{MLP}\left(\hat{\boldsymbol{Z}}_{ij}^{\top} \hat{\boldsymbol{Z}}_{ij}, \boldsymbol{h}_i, \boldsymbol{h}_j\right),\tag{1}
$$

$$
\mathbf{M}_{ij} = \hat{\mathbf{Z}}_{ij} \mathbf{H}_{ij}, \tag{2}
$$

$$
\mathbf{h}'_i = \text{MLP}(\mathbf{h}_i, \sum_{j \in \mathcal{N}(i)} \mathbf{H}_{ij}),
$$
\n(3)

$$
Z'_{i} = Z_{i} + \sum_{j \in \mathcal{N}(i)} M_{ij}, \qquad (4)
$$

where $\hat{\bm{Z}}_{ij}=(\bm{Z}_i-\bar{\bm{Z}},\bm{Z}_j-\bar{\bm{Z}})$ is a concatenation of the translated matrices on the edge ij . $\bar{\bm{Z}}$ is the mean of all nodes for the position vectors and zero for other vectors. EMMP is equivariant w.r.t. $E(n)$.

E-Pool

The role of E-Pool is to coarsen the low-level system $\mathcal{G}^{\mathsf{low}}=(\{(\mathcal{Z}_i^{\mathsf{low}},\pmb{h}_i^{\mathsf{low}})\}_{i=1}^N,\pmb{A}^{\mathsf{low}})$ into an abstract and high-level system $\mathcal{G}^{\mathsf{high}} = (\{\bm{\mathcal{Z}}^{\mathsf{high}}_i\}$ $\bm{h}_i^{\mathsf{high}}, \bm{h}_i^{\mathsf{high}}$ $\binom{\mathsf{high}}{i}$ $\binom{\mathsf{high}}{i-1}$, $\boldsymbol{A}^{\mathsf{high}}$) with fewer particles, $K < N$. We proceed the following equations:

$$
\{\boldsymbol{Z}_i', \boldsymbol{h}_i'\}_i^N = \text{EMMP}(\{\boldsymbol{Z}_i^{\text{low}}, \boldsymbol{h}_i^{\text{low}}\}_i^N, \boldsymbol{A}^{\text{low}}),
$$
\n(5)

$$
s_i = \text{SoftMax}(\text{MLP}(\boldsymbol{h}'_i)), \tag{6}
$$

$$
Z_j^{\text{high}} = \frac{1}{\sum_{i=1}^N s_{ij}} \sum_{i=1}^N s_{ij} Z'_i, \n\boldsymbol{h}_j^{\text{high}} = \frac{1}{\sum_{j=1}^N s_{ij}} \sum_{i=1}^N s_{ij} \boldsymbol{h}_i^{\text{low}}, \n\boldsymbol{A}^{\text{high}} = \boldsymbol{S}^\top \boldsymbol{A}^{\text{low}} \boldsymbol{S},
$$
\n(9)

where the score matrix is given by $\boldsymbol{S}=[s_{ij}]_{N\times K}$, and \boldsymbol{s}_i is its *i-*th row.

E-UpPool

E-UpPool maps the information of the high-level system $\mathcal{G}^{\mathsf{high}}$ back to the original system space $\mathcal{G}^{\mathsf{low}}$, leading to an output system $\mathcal{G}^{\mathsf{out}}$. Particularly,

$$
Z_i^{agg} = \sum_{j=1}^{K} s_{ij} Z_j^{high},
$$
\n
$$
\boldsymbol{h}_i^{agg} = \sum_{j=1}^{K} s_{ij} \boldsymbol{h}_j^{high},
$$
\n
$$
\boldsymbol{h}_i^{out} = \text{MLP} \left(\hat{Z}_i^{\top} \hat{Z}_i, \boldsymbol{h}_i^{low}, \boldsymbol{h}_i^{agg} \right),
$$
\n
$$
Z_i^{out} = \hat{Z}_i \boldsymbol{h}_i^{out},
$$
\n(12)

where $\hat{Z}_i = [Z_i^{\text{low}} - \bar{Z}^{\text{low}}; Z_i^{\text{agg}} - \bar{Z}^{\text{agg}}]$ is the column-wise concatenation of the mean-translated low-level matrix Z_i^{low} and the high-level matrix Z_i^{agg} agg
i

Overall Architecture

The training objective of EGHN is given by:

$$
\mathcal{L} = \sum_{i=1}^N \|Z_i^{\text{out}} - Z_i^{\text{gt}}\|_F^2 + \lambda \sum_{l=1}^L \|(\mathbf{S}^{(l)})^\top \mathbf{A}^{(l-2)} \mathbf{S}^{(l)} - \mathbf{I}\|_F^2,
$$

Table: Prediction error ($\times10^{-2})$ on various types of simulated datasets. The "Multiple System" contains $J=5$ different systems. For each column, $(M, N/M)$ indicates that each system contains M complexes of average size N/M . Results averaged across 3 runs. "OOM" denotes out of memory.

Experiments: M-complex

Table: Prediction error $(\times 10^{-2})$ on the motion capture dataset. Results averaged across 3 runs.

	Subject $#35$ Walk	Subject $#9$ Run
GNN	$36.1 + 1.5$	$66.4 + 2.2$
RF	$188.0 + 1.9$	$521.3 + 2.3$
TFN	$32.0 + 1.8$	$56.6 + 1.7$
$SE(3)$ -Tr.	$31.5 + 2.1$	$61.2 + 2.3$
EGNN	$28.7 + 1.6$	50.9 ± 0.9
GMN	21.6 ± 1.5	44.1 ± 2.3
EGHN	8.5 ± 2.2	25.9 \pm 0.3

Experiments: Motion Capture

Experiments: Protein MD

Figure: Visualization on the MDAnalysis dataset. Left: the prediction of EGNN. Middle: the prediction of EGHN. Right: the pooling results of EGHN with each color indicating a cluster. In the left and middle figure, ground truth in red, prediction for EGNN in blue, and prediction for EGHN in green.

Experiments: Protein MD

Figure: The prediction error of equivariant models on the protein molecular dynamics dataset.

The prediction error is computed as the MSE.