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Challenges

In this work, we focus on the
systems that exhibit hierarchical
structure, e.g., the constrained
N-body systems (or dubbed
M-complex), proteins.

Challenges:

e Satisfying the equivariance
constraints.

M initial System
[ Target System

® |dentifying the hierarchical

structure. M-complex Protein

® Incorporating the above two
recipes in one network.
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Each input multi-body system is modeled as a graph G consisting of N particles
(nodes) V and the interactions (edges) £ among them. For each node i, it is
assigned with a feature tuple (Zi(o), hfo)), where the directional matrix Z,-(O) e RMxm
is composed of m n-dimension vectors, such as the concatenation of position x; € R3
and velocity v; € R3; h; € R is the non-directional feature, such as the atom
number in molecules. The edges are represented by an adjacency matrix A €
We henceforth abbreviate the entire information of a system, i.e.,

({Zi(o)7 hfo)}fvzl,A) as the notation G'" if necessary.
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Equivariance and Invariance

Group equivariant and invariant

Given a set of transformations T, : V — V for g € G, a function ¢ is called G—equivariant if
for every g there exists a transformation Sg : Y — ) such that for all g € G,v €V,

Sg[o(v)] = ¢(Tglv])

Specifically, if Sg = id, then ¢ is G—invariant, where id is the identity transformation.

© ol test image
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Equivariance

¢ should be equivariant to any translation/reflection/rotation of the input states. By
saying equivariance, we imply

o({g- 2NN, ) =g o({ZN,, ),

where g - Z,-(O) conducts the orthogonal transformation as RZ,-(O) for both the position and
velocity vectors and is additionally implemented as the translation x; 4+ b for the position
vector; the ellipsis denotes the input variables uninfluenced by g, including hfo) and A.
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Hierarchical Learning in GNNs: DiffPool

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

AU+ ZU+1) — DiffPool(A), Z()

ZU+1) — g7 (),
AU+ _ DT AN g

S() is a GNN-parameterized assignment score matrix for the /-th layer.
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Equivariant Matrix Message Passing (EMMP)

Given input features {(Z;, h;) f\’zl, EMMP performs information aggregation on the same
graph to obtain the new features {(Z/, h})}" ;. The EMMP layer is undated by

1777

H; = MLP (2,}2,,-, h;, h,-) : (1)
M; = Z;H;;, (2)
h, = MLP(h;, H;), (3)
JEN(i)
Zl=Z+ Y M (4)
JEN(i)

where Z;j = (Z; — Z,Z; — Z) is a concatenation of the translated matrices on the edge ij. Z
is the mean of all nodes for the position vectors and zero for other vectors.
EMMP is equivariant w.r.t. E(n).

8/17



The role of E-Pool is to coarsen the low-level system G = ({(Z!°%, h*")} ¥ |, A®¥) into an
abstract and high-level system Ghigh — ({(Z,-h'gh7 h,h'gh)}f(:l, Ahigh) with fewer particles,
K < N. We proceed the following equations:

{Zilvh;}lN = EMMP({ZIIOWah}OW};V’AIOW)a (5)
si = SoftMax(MLP(h;)), (6)

1 N
Zhieh _ siZ;, (7)

! 25\1:1 Sij ;

. ]_ N
By = s, (8)

! Zszl Sij 2
Ahigh — ST}qlows7 (9)

where the score matrix is given by § = [sjj]yxk, and s; is its i-th row.
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E-UpPool

E-UpPool maps the information of the high-level system G"&" back to the original system
space G'°%, leading to an output system G°'t. Particularly,

K
zEE =y sz, (10)
j—l
h3%e — Z sih", (11)
B = MLP (2] Z;, hio", h®%) (12)
Zout hout (13)

where Z; = [Z|o% — Z'ow; Z8% _ Z388] is the column-wise concatenation of the
mean-translated low-level matrix Z/°¥ and the high-level matrix Z; €.
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Overall Architecture

Initial System: G(©

. (M
Encode Decoder Target System: G

The training objective of EGHN is given by:

N L
L= 11z = ZF|F + A I(sY)TAl=2sO — 1)z,
I=1

i=1 =
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Experiments: M-complex

Table: Prediction error (><1072) on various types of simulated datasets. The “Multiple System” contains J =5

different systems. For each column, (M, N/M) indicates that each system contains M complexes of average

size N/M. Results averaged across 3 runs. “OOM” denotes out of memory.

Single System

Multiple Systems

(3,3) (5, 5) (5,10) (10,10) | (3.3) (5, 5) (5, 10) (10, 10)
Linear 35.152001 35.22+000 30.14+000 31.4440.01|35.91+001 35.29+001 30.88+0.01 32.49+0.01
TFN 25.11+015 29.35+017 26.01+022 OOM |27.33+021 29.01+013 25.57+014 OOM
SE(3)-Tr. 27.12+026 28.87+0.00 24.48+035 OOM |28.14+0.16 28.66+010 25.00+028 OOM
GNN 16.00+0.11 17.55+019 16.15+008 15.9140.15|16.76+013 17.58+011 16.55+021 16.05+0.16
RF 14.20+0090 18.37+012 17.08+003 18.57+030(15.17+0.10 18.55+012 17.244011 19.34+0.25
EGNN 12.69+019 15.37+013 15.12+011 14.64+027(13.33+012 15.48+016 15.294012 15.02+018
EGHN  11.58+0.0114.42+0.0s 14.29-+0.40 13.09+0.66/12.80+0.56 14.85-+0.03 14.50+0.08 13.11+0.02
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Experiments: M-complex
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Figure: Visualization on M-complex systems. Left: EGNN; Middle: EGHN; Right: clusters.
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Experiments: Motion Capture

Table: Prediction error (x1072) on the motion capture dataset. Results averaged across 3 runs.

Subject #35 Subject #9
Walk Run

GNN 36.1 £1.5 66.4 +2.2
RF 188.0 +£1.9  521.3+23
TFN 32.0 +1.8 56.6 +1.7
SE(3)-Tr. | 31.5 +21 61.2 +2.3
EGNN 28.7 +1.6 50.9 +0.9
GMN 21.6 £1.5 441 +£2.3
EGHN 8.5 +2.2 25.9 +0.3
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Experiments: Motion Capture
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Figure: Visualization on Motion Capture. Left: EGNN; Middle: EGHN; SRightz clusters. 1517



Experiments: Protein MD
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Figure: Visualization on the MDAnalysis dataset. Left: the prediction of EGNN. Middle: the prediction of
EGHN. Right: the pooling results of EGHN with each color indicating a cluster. In the left and middle figure,
ground truth in red, prediction for EGNN in blue, and prediction for EGHN in green.
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Experiments: Protein MD
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Figure: The prediction error of equivariant models on the protein molecular dynamics dataset.

The prediction error is computed as the MSE.
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