
Inductive Attributed Community Search: 
to Learn Communities across Graphs

Shuheng Fang†, Kangfei Zhao ∮, Yu Rong *, Zhixun Li †, Jeffrey Xu Yu †

The Chinese University of Hong Kong †

Beijing Institute of Technology ∮

Alibaba DAMO Academy *

VLDB 2024

1



Background: Attributed Community Search
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• Community Search (CS)
• For a graph 𝒢 = 𝒱, ℇ , given a node set 𝒱𝑞 ⊆ 𝒱as a query 𝑞

• Find the query-dependent community 𝐶𝑞 ⊆ 𝒱, where the nodes in 𝐶𝑞
are intensively intra-connected

• Attributed Community Search (ACS)
• Satisfy both structure cohesiveness and attributes homogeneity for a

given query that consists of query nodes and query attributes.

• Real applications
• Social network analysis
• Recommendation systems
• Bioinformatics and fraud detection



Background: Learning-based Community 
Search Approaches
• GNN-based method: recasting the community membership determination to a

classification task

• AQD-GNN/ICS-GNN
• Their trained models are tailored for specific graph/community

• ICS-GNN/COCLEP/CommunityAF/CGNP
• Only support single-node query

• COCLEP & CommunityAF have a limited inductive ability as they rely on the natural generalization of
GNN

• CGNP utilizes meta-learning approach and has inductive ability
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Background: Learning-based Community Search
Approaches
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Problem Statement
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• Attributed Community Search (ACS)
• For an attributed graph 𝒢 = 𝒱, ℇ,𝒜 ,

given a query 𝑞 = (𝒱𝑞 , 𝒜𝑞),

where𝒱𝑞 ⊆ 𝒱 and 𝒜𝑞 ⊆ 𝒜

• Find the query-dependent community
𝐶𝑞 ⊆ 𝒱, where the nodes in 𝐶𝑞 are

intensively intra-connected and the
attributes are similar
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Problem Statement
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Empower the model to generalize and
adapt to new communities and graphs by
inductive learning
➢ For new communities

• Queries from 𝐶𝑞1 , … , 𝐶𝑞𝑖 in graph

𝒢 for training
• Queries 𝑞∗ from a new community
𝐶𝑞∗ for test

• i.e., 𝐶𝑞1 ∩ 𝐶𝑞∗ = ∅,… , 𝐶𝑞𝑖 ∩ 𝐶𝑞∗

➢ For new graphs
• Queries from graph 𝒢 for training
• Queries from new graph 𝒢∗ for test
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IACS Architecture
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IACS
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Aggregator ⨁
Permutation invariant operator,

average: 𝐻 =
1

|𝑄|
σ𝑞∈𝑄𝐻𝑞

GNN Encoder 𝜙𝜃 (𝑞, 𝑙𝑞)

• 𝑘-th layer aggregate: 𝑎 𝑘 𝑣 ← 𝑓𝒜
𝑘
({ℎ 𝑘−1 (𝑢) |𝑢 ∈ 𝑁(𝑣)})

• 𝑘-th layer combine:ℎ 𝑘 (𝑣) ← 𝑓𝒞
𝑘
(ℎ 𝑘−1 (𝑣), 𝑎 𝑘 𝑣 )

Inputs

ℎ 0 (𝑣) = [𝐼𝑙 𝑣 ||𝑒 𝑣 ],

𝐼𝑙 𝑣 = ቊ
1 𝑣 ∈ 𝑙𝑞

+ ∪ {𝒱𝑞}

0 otherwise
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Enhanced Attribute Encoding
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Construct attribute-augmented graph
• 𝒢 = 𝒱, ℇ,𝒜 → 𝒢𝒜 = 𝒱 ∪ 𝒱𝒜 , ℇ ∪ ℇ𝒜
• Use a scalable, task-independent graph embedding algorithm, ProNE
• Pretrain a node embedding for the attributed-augmented graph 𝒢𝒜

𝑒 𝑣 = ෍

𝑎∈𝒜(𝑣)

𝑒𝑎



IACS
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Binary Cross Entropy loss

ℒ = σ 𝒯𝑖∈𝒟
σ

𝑞,𝑙𝑞 ∈(𝒬𝑖,𝐿𝑖)
− log 𝑝 ෡𝑙𝑞 𝑞, 𝒯𝑖

= σ 𝒯𝑖∈𝒟
σ

𝑞,𝑙𝑞 ∈(𝒬𝑖,𝐿𝑖)
(−σ𝑣+∈𝑙𝑞+

log ො𝑦(𝑣+) −σ𝑣−∈𝑙𝑞− log 1 − ො𝑦(𝑣−) )

Adaptive Decoder 𝜌𝜃(𝑞
∗, 𝐻)

• Feature-wise Linear Modulation (FiLM)
𝛾 = 𝑊𝛾𝐻, 𝛽 =𝑊𝛽𝐻,
෡𝐻 = 𝛾⨀𝐻 + 𝛽

• Concatenate query node embedding and query attribute
embedding

𝑒𝒱𝑞∗ =
1

|𝒱𝑞∗|
෍

𝑣∈𝒱𝑞∗

෡𝐻 𝑣 , 𝑒𝒜𝑞∗
=

1

|𝒜𝑞∗|
෍

𝑎∈𝒜𝑞∗

𝑒𝑎

𝑒𝑞∗ =MLP(𝑒𝒱𝑞∗||𝑒𝒜𝑞∗
)

• Inner Product Decoder: 𝑝 መ𝑙𝑞∗ 𝑞
∗, 𝒯 = sigmoid(< 𝑒𝑞∗ , ෡𝐻 >)

A new ACS query
𝑞∗ = (𝒱𝑞∗ ,𝒜𝑞∗)

Adaptive 

Decoder
…

𝒱𝑞

𝒜𝑞

4

𝑞∗

𝜌𝜃

𝑝 ∈ ℝ𝑛

Gating mechanism
δ = sigmod 𝑊δ𝐻 , 𝜖 =𝑊𝜖𝐻,
ො𝛾 = 𝛾 ⨀ δ + 𝜖 ⨀ (1 − δ), መ𝛽 = 𝛽 ⨀ δ + 𝜖 ⨀ (1 − δ),
෡𝐻 = ො𝛾 ⨀𝐻 + መ𝛽



IACS Workflow
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Experimental Studies: Setup
• Model

• encoder: 3-layer GCN, GraphSAGE, GIN, GAT.

• decoder: FiLM + Inner product, FiLM with gating mechanism + Inner product, inner product

• Baselines
• 3 algorithmic approaches

• 3 supervised-learning based approaches

• 2 meta-learning approaches
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Experiential Studies: Effectiveness
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Non-attributed CS
a) IACS models consistently outperform all 

the baselines.
b) The superiority of IACS is primarily

evident in its significant improvement 

in recall (+1.28% compared to the 

best baseline) while maintaining a 

relatively high precision (59.75% ∼
81.44%).



Experiential Studies: Effectiveness
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ACS
a) In general, IACS achieves the highest F1 score in most cases (5 out of 6), even when the graphs of training and 

inference are from different datasets.
b) The improvement in the 8-shot setting is relatively lower compared to the 4-shot setting.



Experiential Studies: Efficiency
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• IACS models exhibit faster training and inference time compared to other baselines in most datasets.

IACS



Experiential Studies: Streaming Model Adaptation
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• The streaming adaptation 
process leads to higher F1 
scores for the streaming 
model than the original 
model across a wide range 
of sequential tasks.

• The results indicate that 
three IACS models exhibit 
an improvement ratio of 
3% in the streaming 
adaptation model.



Experiential Studies: Case Study
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(a) Twitter: Training Communities (b) Ground-truth Community (c) Predicted Community

• These communities exhibit variations, characterized by heterogeneous topological 

structures and attribute distributions.

• We observe a notable overlap between the identified communities and the ground-

truth, thus confirming the accuracy of our predictions.



Summary

• Leveraging ML/DL based approaches for attributed community search

• Existing learning approaches have limited inductive ability and cannot
deal with complex queries.

• Propose Inductive Attributed Community Search (IACS) to infer new
queries for different communities/graphs

• Propose a three-stage workflow to fulfill inductive ACS

• IACS achieves better performance on effectiveness and efficiency
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