Publications

2024

  1. KDD
    Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Broad Physical Dynamics Learning
    Zinan Zheng, Yang Liu, Jia Li, Jianhua Yao, and Yu Rong
    In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024
  2. ICLR
    SEGNO: Generalizing Equivariant Graph Neural Networks with Physical Inductive Biases
    Yang Liu, Jiashun Cheng, Haihong Zhao, Tingyang Xu, Peilin Zhao, Fugee Tsung, and 2 more authors
    In The Twelfth International Conference on Learning Representations, 2024
  3. Neural Networks
    Solving the non-submodular network collapse problems via Decision Transformer
    Kaili Ma, Han Yang, Shanchao Yang, Kangfei Zhao, Lanqing Li, Yongqiang Chen, and 3 more authors
    Neural Networks, 2024
  4. VLDB
    Inductive Attributed Community Search: To Learn Communities Across Graphs
    Shuheng Fang, Kangfei Zhao, Yu Rong, Zhixun Li, and Jeffrey Xu Yu
    Proc. VLDB Endow., Aug 2024
  5. J COMPUT BIOL
    Toward Robust Self-Training Paradigm for Molecular Prediction Tasks
    Hehuan Ma, Feng Jiang, Yu Rong, Yuzhi Guo, and Junzhou Huang
    Journal of Computational Biology, 2024
  6. ICLR
    Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
    Xuan Li, Zhanke Zhou, Jiangchao Yao, Yu Rong, Lu Zhang, and Bo Han
    In The Twelfth International Conference on Learning Representations, 2024
  7. Nature Methods
    scPROTEIN: a versatile deep graph contrastive learning framework for single-cell proteomics embedding
    Wei Li, Fan Yang, Fang Wang, Yu Rong, Linjing Liu, Bingzhe Wu, and 2 more authors
    Nature Methods, Apr 2024

2023

  1. AAAI
    DrugOOD: Out-of-Distribution Dataset Curator and Benchmark for AI-Aided Drug Discovery – a Focus on Affinity Prediction Problems with Noise Annotations
    Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, and 11 more authors
    Proceedings of the AAAI Conference on Artificial Intelligence, Jun 2023
  2. TKDE
    Adversarial Attack Framework on Graph Embedding Models With Limited Knowledge
    Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, and 3 more authors
    IEEE Transactions on Knowledge and Data Engineering, 2023
  3. Information Sciences
    Exploiting node-feature bipartite graph in graph convolutional networks
    Yuli Jiang, Huaijia Lin, Ye Li, Yu Rong, Hong Cheng, and Xin Huang
    Information Sciences, 2023
  4. VLDBJ
    Learned sketch for subgraph counting: a holistic approach
    Kangfei Zhao, Jeffrey Xu Yu, Qiyan Li, Hao Zhang, and Yu Rong
    The VLDB Journal, 2023
  5. TMLR
    Noise-robust Graph Learning by Estimating and Leveraging Pairwise Interactions
    Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, and 3 more authors
    Transactions on Machine Learning Research, 2023
  6. AAAI
    Human Mobility Modeling during the COVID-19 Pandemic via Deep Graph Diffusion Infomax
    Yang Liu, Yu Rong, Zhuoning Guo, Nuo Chen, Tingyang Xu, Fugee Tsung, and 1 more author
    Proceedings of the AAAI Conference on Artificial Intelligence, Jun 2023
  7. DASFAA
    Learning With Small Data: Subgraph Counting Queries
    Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, and Yu Rong
    In Database Systems for Advanced Applications: 28th International Conference, 2023
  8. TPAMI
    Semi-Supervised Hierarchical Graph Classification
    Jia Li, Yongfeng Huang, Heng Chang, and Yu Rong
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023
  9. TNNLS
    Structure-Aware DropEdge Toward Deep Graph Convolutional Networks
    Jiaqi Han, Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang
    IEEE Transactions on Neural Networks and Learning Systems, 2023
  10. VLDB
    Computing Graph Edit Distance via Neural Graph Matching
    Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng
    Proc. VLDB Endow., Jun 2023
  11. ICDE
    Decision Support System for Chronic Diseases Based on Drug-Drug Interactions
    T. Bian, Y. Jiang, J. Li, T. Xu, Y. Rong, Y. Su, and 3 more authors
    In 2023 IEEE 39th International Conference on Data Engineering (ICDE), Apr 2023
  12. Nature Comm.
    Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning
    Shengyu Tao, Haizhou Liu, Chongbo Sun, Haocheng Ji, Guanjun Ji, Zhiyuan Han, and 11 more authors
    Nature Communications, Dec 2023
  13. BRIEF BIOINFORM
    scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data
    Wei Li, Bin Xiang, Fan Yang, Yu Rong, Yanbin Yin, Jianhua Yao, and 1 more author
    Briefings in Bioinformatics, Nov 2023
  14. KDD
    Privacy Matters: Vertical Federated Linear Contextual Bandits for Privacy Protected Recommendation
    Zeyu Cao, Zhipeng Liang, Bingzhe Wu, Shu Zhang, Hangyu Li, Ouyang Wen, and 2 more authors
    In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023
  15. AAAI
    Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
    Rui Jiao, Jiaqi Han, Wenbing Huang, Yu Rong, and Yang Liu
    Proceedings of the AAAI Conference on Artificial Intelligence, Jun 2023
  16. CIKM
    Geometric Graph Learning for Protein Mutation Effect Prediction
    Kangfei Zhao, Yu Rong, Biaobin Jiang, Jianheng Tang, Hengtong Zhang, Jeffrey Xu Yu, and 1 more author
    In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023
  17. TKDE
    Finding Critical Users in Social Communities via Graph Convolutions
    Kangfei Zhao, Zhiwei Zhang, Yu Rong, Jeffrey Xu Yu, and Junzhou Huang
    IEEE Transactions on Knowledge and Data Engineering, 2023
  18. NeurIPS
    Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics
    Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, and Wenbing Huang
    In Advances in Neural Information Processing Systems, 2023

2022

  1. Bioinformatics
    Cross-dependent graph neural networks for molecular property prediction
    Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie, and 2 more authors
    Bioinformatics, Jan 2022
  2. ICML
    Local Augmentation for Graph Neural Networks
    Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, and 3 more authors
    In Proceedings of the 39th International Conference on Machine Learning, 17–23 jul 2022
  3. arXiv
    Transformer for Graphs: An Overview from Architecture Perspective
    Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, and 4 more authors
    2022
  4. TPAMI
    Graph Convolutional Module for Temporal Action Localization in Videos
    Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, and 1 more author
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022
  5. arXiv
    Geometrically Equivariant Graph Neural Networks: A Survey
    Jiaqi Han, Yu Rong, Tingyang Xu, and Wenbing Huang
    2022
  6. ICLR
    Equivariant Graph Mechanics Networks with Constraints
    Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang
    In The Tenth International Conference on Learning Representations, ICLR 2022, 2022
  7. TheWebConf
    Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media
    Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang, and 1 more author
    In Proceedings of the ACM Web Conference 2022, 2022
  8. ICML
    Frustratingly Easy Transferability Estimation
    Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, and Ying Wei
    In Proceedings of the 39th International Conference on Machine Learning, Jul 2022
  9. VLDB
    Query Driven-Graph Neural Networks for Community Search: From Non-Attributed, Attributed, to Interactive Attributed
    Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang
    Proc. VLDB Endow., Feb 2022
  10. IJCAI
    Fine-Tuning Graph Neural Networks via Graph Topology Induced Optimal Transport
    Jiying Zhang, Xi Xiao, Long-Kai Huang, Yu Rong, and Yatao Bian
    In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Jul 2022
  11. SIGIR
    Neighbour Interaction Based Click-Through Rate Prediction via Graph-Masked Transformer
    Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Da Luo, Kangyi Lin, and 3 more authors
    In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022
  12. Pattern Recognition
    Structure-aware conditional variational auto-encoder for constrained molecule optimization
    Junchi Yu, Tingyang Xu, Yu Rong, Junzhou Huang, and Ran He
    Pattern Recognition, 2022
  13. Diversified Multiscale Graph Learning with Graph Self-Correction
    Yuzhao Chen, Yatao Bian, Jiying Zhang, Xi Xiao, Tingyang Xv, and Yu Rong
    In Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, 2022
  14. ICLR
    Energy-Based Learning for Cooperative Games, with Applications to Valuation Problems in Machine Learning
    Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, and Junzhou Huang
    In the Tenth International Conference on Learning Representations, ICLR, 2022
  15. BCE
    Robust Self-Training Strategy for Various Molecular Biology Prediction Tasks
    Hehuan Ma, Feng Jiang, Yu Rong, Yuzhi Guo, and Junzhou Huang
    In Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2022
  16. GNN Book
    Graph Neural Networks: Scalability
    Hehuan Ma, Yu Rong, and Junzhou Huang
    In Graph Neural Networks: Foundations, Frontiers, and Applications, 2022
  17. BIBM
    Integrating Prior Knowledge with Graph Encoder for Gene Regulatory Inference from Single-cell RNA-Seq Data
    Jiawei Li, Fan Yang, Fang Wang, Yu Rong, Peilin Zhao, Shizhan Chen, and 3 more authors
    In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022
  18. NeurIPS
    Equivariant Graph Hierarchy-Based Neural Networks
    Jiaqi Han, Wenbing Huang, Tingyang Xu, and Yu Rong
    In Advances in Neural Information Processing Systems, 2022

2021

  1. DPML
    FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks
    Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Yu Rong, Peilin Zhao, Junzhou Huang, and 2 more authors
    ICLR 2021 Workshop on Distributed and Private Machine Learning (DPML), 2021
  2. ICLR
    Graph Information Bottleneck for Subgraph Recognition
    Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He
    In 9th International Conference on Learning Representations, ICLR 2021, 2021
  3. CIKM
    Spectral Graph Attention Network with Fast Eigen-Approximation
    Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Somayeh Sojoudi, Junzhou Huang, and 1 more author
    In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021
  4. Neurocomputing
    Molecular graph enhanced transformer for retrosynthesis prediction
    Kelong Mao, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang, and Peilin Zhao
    Neurocomputing, 2021
  5. IJCAI
    On Self-Distilling Graph Neural Network
    Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, and Junzhou Huang
    In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Aug 2021
  6. AAAI
    Hierarchical Graph Capsule Network
    Jinyu Yang, Peilin Zhao, Yu Rong, Chaochao Yan, Chunyuan Li, Hehuan Ma, and 1 more author
    Proceedings of the AAAI Conference on Artificial Intelligence, May 2021
  7. TPAMI
    Recognizing Predictive Substructures with Subgraph Information Bottleneck
    Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
  8. NeurIPS
    Not All Low-Pass Filters are Robust in Graph Convolutional Networks
    Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, and 2 more authors
    In Advances in Neural Information Processing Systems, 2021
  9. VLDB
    Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation
    Jinyu Yang, Chunyuan Li, Weizhi An, Hehuan Ma, Yuzhi Guo, Yu Rong, and 2 more authors
    In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Oct 2021
  10. ICML
    Learning Diverse-Structured Networks for Adversarial Robustness
    Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, and 2 more authors
    In Proceedings of the 38th International Conference on Machine Learning, 18–24 jul 2021
  11. CIKM
    Unsupervised Large-Scale Social Network Alignment via Cross Network Embedding
    Zhehan Liang, Yu Rong, Chenxin Li, Yunlong Zhang, Yue Huang, Tingyang Xu, and 2 more authors
    In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021
  12. ACS Omega
    A Novel Scalarized Scaffold Hopping Algorithm with Graph-Based Variational Autoencoder for Discovery of JAK1 Inhibitors
    Yang Yu, Tingyang Xu, Jiawen Li, Yaping Qiu, Yu Rong, Zhen Gong, and 6 more authors
    ACS Omega, 2021
  13. WISE
    Graph Ordering: Towards the Optimal by Learning
    Kangfei Zhao, Yu Rong, Jeffrey Xu Yu, Wenbing Huang, Junzhou Huang, and Hao Zhang
    In Web Information Systems Engineering – WISE 2021, 2021
  14. BIBM
    Gradient-Norm Based Attentive Loss for Molecular Property Prediction
    Hehuan Ma, Yu Rong, Boyang Liu, Yuzhi Guo, Chaochao Yan, and Junzhou Huang
    In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021
  15. IJCNN
    Towards Feature-free TSP Solver Selection: A Deep Learning Approach
    Kangfei Zhao, Shengcai Liu, Jeffrey Xu Yu, and Yu Rong
    In 2021 International Joint Conference on Neural Networks (IJCNN), 2021
  16. DASFAA
    Towards Expectation-Maximization by SQL in RDBMS
    Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang
    In Database Systems for Advanced Applications, 2021
  17. SIGMOD
    A Learned Sketch for Subgraph Counting
    Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong
    In Proceedings of the 2021 International Conference on Management of Data, 2021

2020

  1. TheWebConf
    Graph Representation Learning via Graphical Mutual Information Maximization
    Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and 1 more author
    In Proceedings of The Web Conference 2020, 2020
  2. AAAI
    Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks
    Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and 1 more author
    Proceedings of the AAAI Conference on Artificial Intelligence, Apr 2020
  3. NeurIPS
    Deep Multimodal Fusion by Channel Exchanging
    Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, and Junzhou Huang
    In Advances in Neural Information Processing Systems, 2020
  4. AAAI
    A Restricted Black-Box Adversarial Framework Towards Attacking Graph Embedding Models
    Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, and 2 more authors
    Proceedings of the AAAI Conference on Artificial Intelligence, Apr 2020
  5. TheWebConf
    Adversarial Attack on Community Detection by Hiding Individuals
    Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng, and Junzhou Huang
    In Proceedings of The Web Conference 2020, 2020
  6. Arxiv
    Tackling Over-Smoothing for General Graph Convolutional Networks
    Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang
    CoRR, 2020
  7. NeurIPS
    Dirichlet Graph Variational Autoencoder
    Jia Li, Jianwei Yu, Jiajin Li, Honglei Zhang, Kangfei Zhao, Yu Rong, and 2 more authors
    In Advances in Neural Information Processing Systems, 2020
  8. KDD
    Deep Graph Learning: Foundations, Advances and Applications
    Yu Rong, Tingyang Xu, Junzhou Huang, Wenbing Huang, Hong Cheng, Yao Ma, and 4 more authors
    In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020
  9. VLDB
    Maximizing the Reduction Ability for Near-Maximum Independent Set Computation
    Chengzhi Piao, Weiguo Zheng, Yu Rong, and Hong Cheng
    Proc. VLDB Endow., Jul 2020
  10. ICLR
    DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
    Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang
    In 8th International Conference on Learning Representations, ICLR 2020, 2020
  11. NeurIPS
    Self-Supervised Graph Transformer on Large-Scale Molecular Data
    Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and 1 more author
    In Advances in Neural Information Processing Systems, 2020

2019

  1. ICCV
    Graph Convolutional Networks for Temporal Action Localization
    Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, and 1 more author
    In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Oct 2019
  2. CVPR
    Progressive Feature Alignment for Unsupervised Domain Adaptation
    Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, and 2 more authors
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2019
  3. TheWebConf
    Semi-Supervised Graph Classification: A Hierarchical Graph Perspective
    Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang
    In The World Wide Web Conference, 2019

2018

  1. NeurIPS
    Adaptive Sampling Towards Fast Graph Representation Learning
    Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang
    In Advances in Neural Information Processing Systems, 2018
  2. KDD
    TATC: Predicting Alzheimer’s Disease with Actigraphy Data
    Jia Li, Yu Rong, Helen Meng, Zhihui Lu, Timothy Kwok, and Hong Cheng
    In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018
  3. DASFAA
    Exploiting Ranking Consistency Principle in Representation Learning for Location Promotion
    Siyuan Zhang, Yu Rong, Yu Zheng, Hong Cheng, and Junzhou Huang
    In Database Systems for Advanced Applications, 2018

2017

  1. CIKM
    Minimizing Dependence between Graphs
    Yu Rong, and Hong Cheng
    In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017

2016

  1. CIKM
    A Model-Free Approach to Infer the Diffusion Network from Event Cascade
    Yu Rong, Qiankun Zhu, and Hong Cheng
    In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016

2015

  1. KDD
    Why It Happened: Identifying and Modeling the Reasons of the Happening of Social Events
    Yu Rong, Hong Cheng, and Zhiyu Mo
    In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015

2014

  1. TheWebConf
    A Monte Carlo Algorithm for Cold Start Recommendation
    Yu Rong, Xiao Wen, and Hong Cheng
    In Proceedings of the 23rd International Conference on World Wide Web, 2014